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Abstract

This paper investigates whether the world’s most mature electric vehicle (EV) market in Norway has

overcome critical mass constraints and can achieve sustainable long-term equilibria without subsidies.

We estimate a structural model that allows for multiple equilibria emerging from the interdependence

between EV demand and charging station supply. We first estimate the resulting indirect network effects

using an instrumental variable approach. Then, we simulate long-term market outcomes for each of

the 422 Norwegian municipalities. We find that almost 20% of all municipalities faced critical mass

constraints in the earliest stage of the market. Half of them are effectively trapped in a zero-adoption

equilibrium. However, in the maturing market, all municipalities have passed critical mass. Overall,

about 60% of the Norwegian population now lives in municipalities with a high-adoption equilibrium,

even if subsidies were removed. This suggests that critical mass constraints do no longer justify the

provision of subsidies.

Keywords: electric vehicles, network externalities, critical mass, subsidies

JEL: H23, L62, Q48, Q58, R48

∗Corresponding Author: koch@mcc-berlin.net
†Declarations of interest: Nolan Ritter and Alexander Rohlf were partly funded by a grant from the Sustainability Council

of Volkswagen under the project “Fiscal reforms for inclusive mobility.”

1



1 Introduction

The electrification of vehicles is considered the most promising way to decarbonize road transport.

There were about 10 million electric vehicles (EVs) on the road worldwide in 2020. Yet, the

International Energy Agency’s Sustainable Development Scenario concludes that at least 230 million

EVs are needed globally by 2030 to meet the climate goals of the Paris Agreement (IEA, 2021a).

Many countries provide substantial financial incentives to reach this goal. In 2020, governments

across the world spent USD 14 billion on direct purchase incentives and tax rebates for EVs (IEA

2021). Such measures were implemented as early as the 1990s in Norway, in the United States in

2008, and in China in 2014. However, as the technology of and the markets for EVs mature, some

policy makers begin to consider reducing the amount of support. This raises questions about the

optimal timing of EV subsidy programs and the conditions under which an EV market becomes

self-sustaining.

This paper investigates whether the world’s most mature EV market in Norway has overcome

the critical mass hurdles that impede the large-scale adoption of EVs and that justify policy inter-

ventions. Our empirical analysis is guided by a structural model developed by Zhou and Li (2018)

that features both high-adoption and no-adoption equilibria that emerge from the interdependence

between the demand for EVs and the supply of complementary charging stations. We estimate

these indirect network effects for consumers’ EV adoption decisions and investors’ charging station

investment decisions using an instrumental variable approach and municipality-level panel data

from 2012 to 2019. With these estimates, we simulate the long-run equilibria for each of the 422

Norwegian municipalities to evaluate the existence of critical mass constraints and the prevalence of

local markets on a sustainable path to a high-adoption equilibrium in the absence of further policy

support.

Network effects are “indirect” when users’ expected utility depends on the amount and variety

of complementary goods, whose supply depends on the size of the user-base (Katz and Shapiro,

1985). The framework can be expanded through the concept of two-sided markets (Armstrong,

2006; Rochet and Tirole, 2006) by introducing platforms that provide the participating sides with

either a service or a good. Various studies such as Greaker and Heggedal (2010); Pavan (2017);

Meunier and Ponssard (2020) argue that emerging alternative fuel markets are characterized by

network externalities and critical-mass constraints. Empirically, Li et al. (2017) and Zhou and Li

(2018) find significant indirect network effects in the launch stage of the U.S. EV market. More

specifically, Zhou and Li (2018) estimate that more than half of the U.S. Metropolitan Statistical

Areas (MSA) faced critical-mass constraints as of 2013. Springel (2019) analyzes the Norwegian EV

market within the two-sided market framework and shows that subsidies for charging stations are
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relatively more effective than purchase subsidies in fostering demand for EVs when the EV market

starts to develop.

Our analysis addresses questions regarding the external validity of these pioneer studies. The

current understanding of indirect network effects and critical mass issues is largely based on evidence

from the earliest stages of the EV market, in which buyers are predominantly “early-adopters” who

face considerable range limitations because of a lack of public charging infrastructure. For instance,

the evidence from the U.S. is based on observations from 2013 when only 0.5% of newly registered

vehicles were EVs, when there were only 26 charging stations per MSA, and when only 10 EV

models were available. In sharp contrast, in 2019 in Norway almost 50% of all new registrations

were EVs, there were on average 123 charging stations per metropolitan region1, and there were 33

mass-produced EV models. Given these stark differences, we seek to contribute to the literature

by providing evidence on the role of critical mass constraints over a long time frame in this well-

developed market. Whether critical mass constraints remain a relevant consideration in more

mature markets is an open question of high relevance to policy discussions because it is the critical

mass issue that justifies policy interventions. Thus, our paper shifts the research focus to the

question whether critical mass constraints can become non-binding over time, even when subsidies

are abolished.

We find that in 2012 when the EV market was in its infancy, almost 20% of the Norwegian

municipalities faced critical mass constraints despite subsidies. Moreover, about half of them were

effectively trapped in a zero-adoption equilibrium. In stark contrast, under mature market condi-

tions in 2019, all municipalities surpass their critical mass constraints and are on a stable path to

EV adoption. Importantly, this holds true even when subsidies are abolished. This is particularly

notable because the exemptions from value added and vehicle registration taxes may exceed half of

the pre-tax vehicle purchase price (IEA, 2021a). Thus, the goal to move markets beyond critical

mass constraints does not justify the current level of subsidies. Without subsidies, about 60% of

the Norwegian population in 2019 would have already lived in municipalities securely locked into

high-adoption equilibria. Finally, we show that the continuation of EV subsidies may be justified

if a long-term EV market penetration is a distinctive policy goal in semi-urban municipalities that

would otherwise not adopt EVs. Moving away from the current nation-wide subsidy to localized

schemes may allow better targeting and less windfall profits.

The paper is structured as follows. Section 2 describes the Norwegian EV market and the

policies that have facilitated its rapid development. Section 3 presents the theoretical framework
1 There are 14 statistical metropolitan areas ("Byregioner") in Norway. The number of installed charging stations in

2019 ranged from the 16 stations in the Tromsø region, to 770 stations in the Greater Oslo region.
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Figure 1: EV stock
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Notes: The upper part of this Figure shows the EV stock between 2008 and 2020. The lower part of this Figure

indicates the share of EVs in the vehicle stock. All figures according to IEA (2021b).

that allows for multiple equilibria. Section 4 describes the data underlying our analysis. We outline

the empirical strategy in Section 5. We present and discuss the estimation results in Section 6 before

introducing our policy simulation in Section 7. The final Section summarizes and concludes.

2 Norwegian Electric Vehicle Policy

With a battery electric vehicle (BEV) share of almost 12% in its vehicle stock in 2020, Norway is

the country with the highest per capita share of EVs. Figure 1 illustrates the development of the

stock of electric vehicles over time. In addition to the 54.4% of sold passenger vehicles in 2020 that

were BEVs, an additional 19.9% were plug-in hybrids. While in the early 2010s, owners of EVs

predominately lived in densely populated areas such as Oslo, there are few municipalities without

any EV owners today (see Figure 6 in the Appendix). Until 2025, the Norwegian government

intends all newly registered vehicles to be emissions free (Figenbaum, 2018, p. 14)).

The increase in the share of EVs was supported by several policy measures. First, EVs have

been exempt from vehicle registration taxes since 1990 and exempt from value added tax (VAT)

since 2001 (Figenbaum, 2017). Given a VAT of 25%, this exemption alone is of significant economic

magnitude. Together with registration tax exemptions, the tax rebate may exceed half the initial
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(pre-tax) vehicle purchase price (IEA, 2021a). Second, Norway produces cheap electricity using a

share of 95% hydro (Statistics Norway, 2020) while simultaneously levying high taxes on motor

fuels. This reduces the operational costs of EVs compared to conventional vehicles. Moreover, EVs

are subject to reduced tolls on toll roads (since 1997), reduced fares for ferries (since 2009), enjoy

access to bus lanes (since 2003), face significantly reduced or waived parking fees (since 1999), and

enjoy free charging in some municipalities.

In addition to monetary incentives for EV adopters, the Norwegian government also supports

investments in the charging infrastructure, a complementary good to EVs. Figure 2 illustrates the

development of the number of charging points by charging speed over time. From 2009 onward, the

government earmarked an annual 50 million Norwegian Krona (NOK), about 5 million EUR, to

support the installation of charging stations. This measure increased the number of slow charging

points from 3, 500 in 2010 to over 10, 000 in 2019. Between 2010 and 2014, the annual subsidies

were shifted to support fast charging stations. This policy measure has increased the number of fast

charging points from zero to over 15, 000 over the course of ten years. Overall, the government’s

aim is to provide at least one fast charging station for every 50 km of main roads (Lorentzen et al.,

2017). Although the daily average travel distance does not exceed 47 km, fast charging stations

significantly increase the utility of EV owners who commute long distances.

3 Theoretical Framework

Our goal is to understand the long-term equilibrium of the EV market in the presence of critical-

mass constraints that arise from indirect network effects. While reduced-form analyses may suffice

to identify network effects in the Norwegian EV market (Delacrétaz et al., 2020), it is necessary to

use structural approaches and conduct counterfactual analyses to learn about the role of critical

mass constraints under alternative policy scenarios.

We implement the approach of Zhou and Li (2018) with some minor adaptations. We main-

tain their notation to facilitate comparison and to allow readers to fully benefit from their model

discussion. The model characterizes consumers’ EV adoption decisions on the demand side and

investors’ charging station investment decisions on the supply side. It allows for multiple equilibria

and captures indirect network effects.

3.1 Demand for Electric Vehicles

At the beginning of period t, there are Nt−1 charging stations, Qt−1 EVs, and q̄t potential buyers

of EVs. Consumer i’s expected utility from an EV is E(uit) = θiv(N
e
t ) − αtPt. θiv(N

e
t ) is the
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Figure 2: Number of charging points
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Notes: This Figure indicates the number of charging points by charging speed. A charging point is considered

fast if its output exceeds 22 kW. All figures according to IEA (2021b).

expected utility of the charging network that arises from a combination of individual i’s preference

for the public charging network θi and a function of the number of expected charging stations v(·).
The higher the expected number of charging stations N , the higher is i’s utility. The term −αtPt

captures that i’s utility decreases as the price Pt of the EV increases. i only adopts an EV if her

utility is positive. Overall, the number of new EV sales in t is

qt = q̄t

[
1−Gt

(
αtPt

v(Ne
t )

)]
, (1)

where Gt(·) is a smooth cumulative density function with a lower bound of 0 and an upper bound

that depends on individual i’s preference for the charging network θ.

Assuming a vehicle scrappage rate ρ, the stock of EVs Q in t is:

Qt = q̄t

[
1−Gt

(
αtPt

v(Ne
t )

)]
+ (1− ρ)Qt−1 . (2)

Substituting the market share of EVs st = qt/q̄t into equation (1) and taking logarithms returns

an expression that explains the market share of conventional vehicles (1− st)

ln(1− st) = β1ln(Nt) + β2ln(Pt) + ξt (3)
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as a function of the number of charging stations, the price of EVs, and a number of additional

market conditions ξt. β1 captures indirect network effects and β2 captures consumers’ sensitivity

to the EV price.

3.2 Supply of Charging Stations

The supply of charging stations Nt depends on their profitability. Per consumer profit at charging

station k is πk = (rk− c)Dk(r1, . . . , rN ). rk is the price for charging, and c is the constant marginal

cost of charging to the station owner which includes the cost of electricity and maintenance. Demand

for charging Dk(r1, . . . , rN ) depends on its price rk. In the equilibrium, the price for charging is

identical across all stations and depends on the overall number of charging stations rk = r(N).

Thus, the profit function can be re-written as π(N) = (r(N)−c)D(r(N))
N . If the cost for building a

charging station is Ct and investors expect an EV stock of Qe
t , then the expected profit of a charging

station is Πe
t = −Ct+Qe

t ·π(Nt)+δ ·Qe
t+1 ·π(Ne

t+1)+ . . . . The profit per station can be transformed

to indicate the number of charging stations in t:

Nt = π−1

(
Ct − δCt+1

Qe
t

)
(4)

Following a logarithmic transformation, one can recover a supply function for charging stations that

depends on the electric vehicle stock Q, the change in cost of charging stations C, and a number of

additional market conditions ηt:

ln(Nt) = γ1 · ln(Qt) + γ2 · ln(Ct − δ · Ct+1) + ηt (5)

γ2 captures investors’ sensitivity to investment costs while γ1 measures indirect network effects.

If γ1 > 0 and β1 < 0 from equation 3, there exist positive indirect network effects. In this case,

a shock that increases N also increases the number of EVs, which in turn further increases the

number of charging stations thereby generating a positive feedback loop.

3.3 Market Equilibrium

In the steady state, the EV stock, the stock of charging stations, and their underlying determinants

are fixed. This implies, for instance, that Qt = Qt−1 = Q∗ and Nt = Nt−1 = N∗, q̄t = q, Pt = P ,

θ̄t = θ, αt = α, ηt = η, and Ct = C. Substitution of the steady state values into equations 2 and 4

returns

Q∗(N) =

[
1−G

(
αP

v(N)

)]
q̄

ρ
(6)
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Figure 3: Market cases

(a) Case I:

No adoption

(b) Case II:

Critical mass

(c) Case III:

Automatic adoption

and

N∗(Q) = π−1

(
(1− δ)C

Q

)
. (7)

Because v(·) increases monotonically while π(·) decreases monotonically in N , Q approaches zero

if N approaches zero. Therefore, the solution N∗ = 0 and Q∗ = 0 is always a possible steady-state

equilibrium in which neither EVs nor charging stations exist. Depending on market conditions,

this could be the only equilibrium as shown in the left panel of Figure 3. In this case, a shock

that increases N leads to the adoption of some electric vehicles. However, in the following periods,

N and Q will decline until both have returned to zero. This is one of the three possible market

equilibria, which we label Case I “no adoption.”

The middle panel of Figure 3 highlights Case II which is subject to “critical mass” constraints.

This case has two positive equilibria: one that is unstable at the critical mass, and one that is

locally stable. Only if the market surpasses critical mass, it is set on a path to the locally stable

equilibrium with high EV adoption. If below critical mass, the market is trapped on an inexorable

path to the origin and zero adoption as in Case I. Finally, the right panel illustrates Case III with

“automatic adoption.” In this case it is only a matter of time before the market reaches the globally

stable equilibrium with mass EV adoption.
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Formally, the long-run equilibria are given by

LHS︷ ︸︸ ︷
(1− ρQ∗/q̄)Q∗−β1γ1 =

RHS︷ ︸︸ ︷
P β2Cβ1γ2(1− δ)β1γ2eξ+β1η . (8)

The right-hand side (RHS) is constant in Q. The left-hand side (LHS) reaches its maximum at

LHSmax = (1− β1γ1)
β1γ1−1(−β1γ1q̄/ρ)

−β1γ1 , where Q∗ is defined as Q∗ = Q̂ = −β1γ1q̄
(1−β1γ1)ρ

. If all

parameters have the expected signs, i.e. β1 < 0, β2 > 0, γ1 > 0, γ2 < 0, the three cases from Figure

3 can be differentiated.

Case I: No Adoption A municipality is in the “no-adoption” case if LHSmax < RHS. In this

case, the number of charging stations and the EV stock are both N = Q = 0. Potential explanations

for this outcome are that either the EV price P is too high or there are too few potential EV buyers

with high preference for the public charging network θ.

Case II: Critical Mass A municipality is subject to critical mass constraints if LHS(Q) <

RHS ≤ LHSmax. Q is the EV stock that corresponds to the minimal size of the charging network

for which there is positive EV adoption. It is defined as Q = (1−δ)C

(Pβ2eξ)1/(β1γ1)eη/γ1
. Case II arises

for a municipality specific range of EV prices in combination with a small market size (q), weak

preferences for EVs (α) or the public charging network (θ), and low benefits from public charging

station investments (η).

Case III: Automatic Adoption If LHS(Q) ≥ RHS, there is one globally stable, positive

equilibrium. This case arises either because the EV price P is very low or because there are many

potential EV buyers with high preference θ for the public charging network.

Figure 4 illustrates the three different cases under the condition that the number of charging

stations exceeds the minimum number Q that allows EV adoption. When the curve described by

LHS does not intersect with RHS, there is no equilibrium (Case I). A reduction of the EV price

through subsidies shifts the RHS downward. If subsidies shift RHS1 to either RHS2 or RHS3, Case

I becomes Case II or III depending on the magnitude of the downwards shift.

4 Data

The Norwegian Road Federation provides annual registration data for new vehicles for the 422

municipalities in Norway. Among the 630 available vehicle models, 33 are mass-produced battery
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Figure 4: Policy impacts of EV subsidy on long-run equilibria

¯
Q

LHS(
¯
Q)

RHS1

RHS2
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critical mass locally stable

globally stable

Q∗

LHS

Notes: This Figure shows the three equilibrium cases under the condition that the number of EVs exceeds the

minimum number Q required for a charging network that supports positive EV adoption. Red dots highlight the

intersections that describe the possible equilibria. RHS1 describes Case I and the absence of equlibria. RHS2

illustrates Case II with two possible equilibria. RHS3 shows Case III with one global equilibrium. A reduction

of the EV price through subsidies would shift the RHS downwards.

electric vehicles. We use this information to calculate the market share for each EV model by

municipality over time. We collect data on the energy consumption of EVs from their respective

manufacturers and calculate their gasoline equivalent fuel efficiency using a conversion factor of

33.705 kWh per gallon provided by the U.S. Environmental Protection Agency (EPA). Figure 6 in

the Appendix provides an overview of new EV registrations by municipality.

NOBIL, Enova, and the Norwegian Electric Vehicle Association provide detailed information

on the Norwegian charging station infrastructure. For instance, the data includes the latitude and

longitude of each charging station, the date when it entered service, whether it received public

funding, and the level of public subsidies for charging stations by municipality. Figure 7 in the

Appendix shows the spatial distribution of charging stations in 2012 and 2019.

Statistics Norway2 provides data on the number of EVs registered before 2012, the net me-

dian household income adjusted for the Norwegian consumer price index, the number of out-of-

municipality commuting individuals between the ages of 20 and 66, the gasoline price, the length of

roads by municipality, the total area of each municipality, and the deficit in the municipal accounts.
2 See Appendix 9 for table codes from ssb.no.
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The Norwegian Travel Survey of 2013-2014 provides information on the average travel time to work

by municipality (Hjorthol et al., 2014). Finally, we obtain data on the number of supermarkets, fuel

stations, malls, and stores from OpenStreetMap and Geofabrik. Comparisons with other sources

confirm that the open source data is generally reliable.

Table 1 presents summary statistics for the data underlying our analysis. The upper panel holds

the variables used in the estimation of EV demand, while the lower panel presents the variables

used in the estimation of the charging station supply. The subscripts indicate the level at which we

measure the individual variables in our data. j is the EV model, of which there are a total of 33, m

indicates the municipality, of which there are a total of 422, and t indicates the year between 2012

and 2019.

5 Empirical Strategy

5.1 Demand for Electric Vehicles

This is how we estimate the empirical counterpart to the EV demand equation 3 from the theoretical

model:

ln(1− sjmt) = β1 · ln(Nmt) + β2 · ln(Pjt) + β′
3 ·Xjmt + µjm + λt + εjmt . (9)

sjmt is the market share of EV model j in municipality m at time t. The dependent variable is the

market share of vehicles other than the specific EV model. Therefore, β1 < 0 indicates a positive

elasticity of EV demand with respect to the combined number Nmt of slow and fast charging stations

in municipality m and year t. Consequently, β2 > 0 indicates a negative relationship between the

market share and the price Pjt of a given EV model in a given year. The price includes cost,

insurance, freight, taxes, and any importer or dealer profits.3

The model-municipality fixed effects µjm measure time invariant characteristics at the munici-

pality level such as population size and density, specific preferences for EVs, and the prevalence of

local incentives such as free toll-roads and parking, reduced fares, and access to bus lanes.4 The

fixed effects also absorb local preferences for and the local availability of certain EV models, and

control for time-invariant model characteristics such as brand and model reputation. The year fixed

effects λt control for national shocks that affect EV demand. The matrix X holds additional con-

trol variables, namely the real median household income per municipality, the share of commuters
3 Please note that because of the occurrence of zero values we use the inverse hyperbolic sine transformation (Bellemare

and Wichman, 2020) for some variables indicated in the table captions.
4 Halse et al. (2021) quantify the impact of such incentives on local vehicle demand patterns.
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Table 1: Summary statistics

EV demand Mean St. Dev.

Market Sharejmt 0.009 0.028

Pricejt (NOK) 283, 853.996 255, 734.448

Charging Stationsmt 4.497 17.552

Net Median Household Incomemt (NOK) 504, 972.407 55, 842.250

Shopsm 9.801 22.929

Share of Out-Commuters in 2011mt 0.166 0.079

Average Commute Timem (Minutes) 45.018 23.204

Gasoline Pricet (NOK) 14.702 0.673

Length of State Roadsm (in km) 25.280 32.160

Number of ModelsjtBrand 12.335 8.627

Number of ModelsjtOther 339.238 29.452

WeightjtBrand (kg) 1, 521.663 256.740

WeightjtOther (kg) 1, 570.378 35.991

Lengthjt
Brand (cm) 447.228 28.864

Lengthjt
Other (cm) 453.198 3.426

Fuel Consumptionjt
Brand (l/100km) 4.927 1.226

Fuel Consumptionjt
Other (l/100km) 5.775 0.101

Charging station supply

Charging Stationsmt 3.980 16.414

Station Costmt (NOK) 278, 100.830 53, 892.491

Per Capita Deficitmt (NOK) 1, 363.117 2, 290.848

Lenght of State Roadsm (in km) 25.280 32.160

EV Stockmt 221.352 1, 496.306

Average Fuel-Station Distancem (in km) 68.829 43.474

Out-Commuters in 2011m 1, 927.436 4, 034.423

Notes: This table presents descriptive statistics across municipalities, years of observation, and vehicle models.

Superscripts differentiate whether vehicle specific characteristics apply to the vehicles of a given brand or all

others. All monetary units in prices of 2015. The average real cost of installing a charging station is 290, 000

NOK. To accommodate for public support, we divide the available public funds by the number of stations installed

in a given year and subtract that amount from the real cost. Because funding cannot exceed the average real

cost, any remaining funds are passed on to the next period.
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interacted with a linear time trend and fuel prices interacted with the average travel time to work.

ε is an error term.

Because the number of charging stations and the size of the EV stock are determined simultane-

ously, we instrument for ln(Nmt) using two shift-share (or "Bartik") instruments. First, similar to

Zhou and Li (2018) and Delacrétaz et al. (2020), we instrument the stock of slow charging stations

with the interaction of the total number of shops, supermarkets, malls, and department stores at the

level of that municipality and the national stock of slow charging stations in the preceding period

in all other municipalities. According to Figenbaum (2018), charging infrastructure is often located

at malls and retail stores. Chains like McDonald’s, IKEA, and Kiwi food-stores install charging

stations to attract patrons. Therefore, our IV strategy’s intuition is that the municipalities with

more sales points have a better endowment of good sites for charging and will be more affected by

national shocks than others.

Second, we instrument the stock of fast charging stations in a municipality with the interaction

of the total length of state roads in that municipality and the national stock of fast charging stations

in the preceding period in all other municipalities. Because the government aims for at least one fast

charger on every 50 km segment of major road, fast charging stations are mainly located along major

roads (Figenbaum, 2018). Thus, the intuition of our shift-share instrument is that municipalities

with more state roads will be more affected by national shocks to fast charging station investments

than others.

Because the demand for vehicles and their prices are determined simultaneously, we also in-

strument the price of EV models Pjt. To this end, we construct an instrument from automakers’

price setting behavior. According to Berry et al., automakers set the price for each of their models

based on the attributes of their competitors’ models and their own brand’s other models. With K

observed exogenous vehicle characteristics, the set of instruments comprises the aggregate values

of attributes of a brand’s other vehicles zBrand
k and the aggregate values of other brand’s vehicles

zOther
k .5 For model j of brand b at time t with a set of brand models Sbt , and the number of models

sold by a given brand at a given time Nbt, the vector of instruments includes 2 ·K instruments with

zBrand
jkt =

∑
zrkt

r �=j,r∈Sbt

Nbt − 1
and zOther

jkt =

∑
zrkt

r �=j,r/∈Sbt∑
Ndt

d �=b

. (10)

The attributes we use are length, curb weight, and fuel consumption in liters per 100km or their

equivalent for EVs. Our identifying assumption is that our instruments are independent of unob-

served product characteristic in the error term after controlling for the model-municipality and year
5 Because we take logarithms, our setup is identical to using means as in Bresnahan et al. (1997).
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fixed effects. We present summary statistics for our instruments in Table 1.

5.2 Supply of Charging Stations

This is the empirical counterpart of the theoretical charging station supply in equation 5:

ln(Nmt) = γ1 · ln(Qmt) + γ2 · ln(Cmt − δ · Cmt+1) + γ′
3Xmt + υm + ςt + ϑmt . (11)

γ1 indicates the elasticity of the total number of charging stations Nmt with respect to the stock

of EVs Qmt. γ2 does the same for the change in the cost of installing a charging station Cmt. We

include municipality fixed effects υm and year fixed effects ςt. ϑmt is an error term. Matrix X holds

control variables, including the length of the state road network by municipality times a linear time

trend and the deficit per capita in a given year to capture local government expenditure.

To address concerns regarding the endogeneity from simultaneity, we also use instruments for

the EV stock Qmt. We construct two instruments. For the first, we follow Zhou and Li (2018)

and use a proxy for the municipality-specific fuel price. The intuition for this instrument is that

higher local fuel prices increase the total cost of ownership of conventional vehicles, which is likely

to induce more consumers to purchase an EV. Also, it is reasonable to assume that the fuel price

only affects the number of charging stations via its effects on the EV stock. We follow Springel

(2019) and multiply the fuel price with the average density of fuel stations at the municipal level

to approximate the level of local competition.6 We expect that a lower fuel station density leads to

higher and less volatile prices (Loy et al., 2018) and, hence, to a higher EV stock.

Second, we also use the number of out-of-municipality commuters to instrument for the EV

stock. According to Figenbaum (2018), the average EV owner is more likely to drive to work and

has a longer commute than owners of conventional vehicles. In Norway, electricity is considerably

cheaper than fossil fuels (Lévay et al., 2017). Moreover, EVs are exempt from most road tolls and

parking fees. It is reasonable to assume that the number of commuters only affects the number of

charging stations via their influence on the EV stock. To rule out concerns that better charging

infrastructure incentivizes commuting, we multiply the EV stock in the previous year in all other

municipalities by the local number of out-of-municipality commuters in 2011, to obtain another

shift-share instrument.
6 Note that data on municipality-level fuel prices over time is unavailable.

14



6 Estimation Results

Table 2 presents our results for the demand for EVs using OLS and IV. The conditional F -statistics

(Sanderson and Windmeijer, 2016) indicate a strong first stage. Table 7 in the Appendix holds the

results for the first stage. Only our IV elasticity estimates have the expected signs.

First, the coefficient for the number of charging stations N is insignificant with OLS but turns

negative and highly significant with IV. The negative coefficient estimate based on IV implies that a

larger charging station network increases EV demand. Our results suggest that OLS underestimates

the effect of charging station availability on consumers’ EV adoption decisions. This bias in OLS

may stem from an unobserved demand shock that is negatively correlated with the size of the

charging network, such as the introduction of incentives for home charging from local governments

or utilities in response to the limited number of public charging stations in select municipalities.

With −0.004 the magnitude of our IV estimate is of considerably smaller magnitude compared

to the −0.012 in Zhou and Li (2018) for the nascent US market. This suggests that Norwegian

consumers are less sensitive to the supply of charging station than early U.S. consumers. One

potential explanation is that home charging is by far the most dominant charging mode in the

mature Norwegian market (Figenbaum, 2018).

Second, the coefficient for the price of EVs P is negative in the OLS specification but turns

a positive sign in the IV approach. The positive IV coefficient implies that EV consumers are

sensitive to the purchase prices. The difference in the estimates between OLS and IV suggests that

vehicle prices are positively correlated with unobserved time-varying local demand conditions, such

as time-varying tastes for specific EV models in given municipalities.

To evaluate the economic magnitude of feedback effects on the consumer side, we calculate the

EV purchase price reduction that is needed to compensate for one fewer charging station. Given

our estimates for β1 and β2, we calculate that one fewer charging station in a given municipality

has to be compensated by a reduction in the price of EVs by about 18, 939 NOK or about 1, 900

EUR on average to hold the EV stock constant.7 The magnitude of these positive feedback effects

on the demand side is of considerably higher magnitude compared to the 355 USD in Zhou and Li

(2018) for the nascent U.S. market. This is mainly driven by the lower EV price elasticity that we

find for Norwegian consumers.

Table 3 holds the results from estimating the supply of charging stations using OLS and IV.

Using instruments leads to considerably different results. First, the coefficient for the EV stock Q

7 This calculation relies on the sample mean price P̄ = 283, 853 NOK, the average number charging stations N̄ = 4.5,

and the estimated coefficients β̂1 and β̂2. Let x denote the price change needed to compensate for one fewer charging

station: x = β̂1P̄

β̂2N̄
.
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Table 2: EV demand

Dependent variable ln(1− Sjmt)

OLS IV

ln(Nmt) 0.000 −0.004∗∗∗

(0.000) (0.001)

ln(Pjt) −0.012∗∗∗ 0.012∗∗∗

(0.001) (0.002)

ln(Incomemt) −0.008∗ −0.008∗

(0.004) (0.004)

Commutersm · Time Trendt −0.002∗∗ −0.002∗∗∗

(0.001) (0.001)

ln(Gasoline Pricet) · ln(Commute Timem) −0.002 −0.001
(0.002) (0.002)

Observations 55,290 55,290

1st stage conditional F -stat (Nmt) 53

1st stage conditional F -stat (Pjt) 11,893

Year FEs Y Y

Model-Municipality FEs Y Y

Notes: This table presents the OLS and IV regression results for EV demand. Please note that we use an inverse

hyperbolic sine transformation instead of ln(Nmt) because there are many zero values in this variable. Standard

errors are clustered at the model-municipality and year level. ∗∗∗(∗∗,∗ ) indicates statistical significance at the

1% (5%, 10%) level. Conditional F -statistics based on Sanderson and Windmeijer (2016) are reported for the

first stage. They are both larger than the critical value of 10.58 suggested by Stock and Yogo (2005) for a model

with two endogenous variables, ten instruments, and maximum accepted bias of the IV estimator relative to OLS

equal to 10%.

increases nearly threefold compared to OLS. Second, the standard error increases roughly sixfold.

Yet, the IV estimate remains highly significant. With an F -statistic of 22, the first stage is strong.

Altogether, there is again clear evidence that OLS results are biased because of endogeneity. Table

6 in the Appendix holds the results for the first stage.

In the IV specification, the positive coefficient for Q indicates that a 1% increase in the EV stock

Q increases the number of charging stations N by 0.331%.8 This coefficient is markedly smaller

than the elasticity of 0.671 from Zhou and Li for the nascent U.S. market. This suggests that the

indirect network effects of the EV stock to the charging station supply are weaker in more mature
8 We follow Bellemare and Wichman (2020) to calculate this elasticity based on the coefficient estimate in Table 3,

which is only an approximation of the elasticity because of the inverse hyperbolic sine transformation.
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markets, e.g. because in a market environment, in which the large majority of newly sold vehicles

are electric, investors face considerably less uncertainty about the demand side and therefore may

be more concerned about other investment conditions, such as building costs. The statistically

significant coefficient for the change in charging station costs suggests that future reductions in

installation costs reduce the number of concurrent installations.

Table 3: Charging station supply

Dependent variable ln(Nmt)

OLS IV

ln(Qmt) 0.124∗∗∗ 0.321∗∗∗

(0.021) (0.121)

ln(Cm,t − δ · Cm,t+1) −0.013∗∗∗ −0.013∗∗∗

(0.001) (0.001)

ln(Per Capita Deficitmt) −0.004∗∗ −0.004∗∗

(0.002) (0.002)

ln(Length of State Roadsm) · Time Trendt 0.020∗∗∗ 0.018∗∗∗

(0.003) (0.003)

Observations 3,376 3,376

1st stage F -statistic 22

Year FEs Y Y

Municipality FEs Y Y

Notes: This table presents the OLS and IV regression results for the supply of charging stations. Please note

that we use an inverse hyperbolic sine transformation instead of ln(Nmt), ln(Qmt), and ln(Cm,t − δCm,t+1)

because there are many zero values in these variables. Standard errors are clustered at the municipality and year

level. ∗∗∗(∗∗,∗ ) indicates statistical significance at the 1% (5%, 10%) level.

7 Policy Simulation

Having recovered the parameters of the underlying theoretical structural model, we use equation

8 to determine in which of the three possible equilibrium cases each municipality is (see Section

3.3). This allows us to evaluate whether critical mass constraints remain binding in the relatively

mature Norwegian EV market. Relatedly, we are interested in the number of local markets that

will eventually reach a high-adoption equilibrium even without further policy support. To this end,

we run simulations for two different policy regimes for 2012 and 2019 that mark the beginning and
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the end of our sample period.

First, we run a simulation with the current policy support that subsidies EV purchase prices.

In particular, EVs are exempt from the 25% value added tax (VAT) and the vehicle registration

tax, which was, on average, about 1, 155 EUR in 2019.9 Second, we run a simulation in which

EV purchase prices do not benefit from VAT and vehicle tax exemptions. For both simulations,

we assume that the cost of building and operating a charging station is C = 290, 000 NOK or

about 29, 000 EUR. In addition, we assume a scrappage rate of ρ = 0.044 (Statistics Norway) and

a discount factor of δ = 1/1.06.

Table 4: Policy simulation

Year 2012 2019

EV Subsidies no yes no yes

Municipalities by Case

I 361 309 336 264

II 40 77 50 100

below critical mass 7 32 0 0

above critical mass 33 45 50 100

III 21 36 36 58

Notes: This table shows into which of the three equilibrium cases the 422 Norwegian municipalities fall. The left

panel is for 2012 while the right panel is for 2019. In both cases, results are reported for the prevailing policy

regime that offers subsidies as well as a counterfactual scenario without. For Case II, the table also returns the

number of municipalities below or above the critical mass constraint.

Table 4 shows the results of our simulations of the long-run equilibria by subsidy regime for

the years 2012 and 2019. Irrespective of the subsidy regime, we find that the large majority of

municipalities are Case I because they have no positive equilibrium. This is particularly true in the

early stage of the market in 2012 but also holds true in the more mature stage in 2019. Subsidies

can effectively shift some municipalities out of the no adoption equilibrium and are more effective

at this in the later market stage. In 2019, 63% of all municipalities have no positive equilibrium in

the presence of subsidies compared to 80% in the absence of subsidies.

Depending on the year of interest and the subsidy regime, between 10% and 24% of municipalities

are classified as Case II municipalities. These municipalities face two possible equilibria and are
9 The curb-weight based registration tax is the only relevant criteria for taxing EVs. We calculate the average benefit

according to registration tax exemption figures from Fridstrøm (2019) and annual vehicle registration data from

Statistics Norway (https://www.ssb.no/en/statbank/table/12906).
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therefore subject to critical mass constraints, which imply convergence towards non-adoption if the

vehicle stock falls short of the critical mass. Table 4 shows that under early market conditions in

2012 between 18% and 42% of affected municipalities fall below critical mass so that their EV stock

will decrease to zero eventually. In sharp contrast, under late market conditions in 2019, all Case II

municipalities have overcome critical mass and are en route to the high-adoption equilibrium. This

holds true even in the absence of subsidies.

Finally, Table 4 shows that across subsidy regimes and market maturity, only between 5% to

14% municipalities fall into the high-adoption Case III. Nevertheless and irrespective of market

maturity, subsidies effectively increase the number of Case III municipalities that automatically

transition to a long-run equilibrium with mass EV adoption.

Table 5 returns demographic statistics at the municipality level that may be correlated with

consumer preferences for EVs or investors’ expectations regarding profits from charging stations.

We report mean values for characteristics by equilibrium case for the policy simulation in 2019 with

and without subsidies. Most importantly, the table shows that with subsidies 75% of the Norwegian

population lives in Case II & III municipalities that all reach a high-adoption equilibrium. Without

subsidies this share is 61%, indicating that a large share of municipalities could maintain a sustain-

able long-term equilibrium without policy support. While there are many Case I municipalities in

absolute numbers, only a small fraction of the overall population lives there. Population density is

on average almost six times higher in Case II than in Case I municipalities and more than twenty

times higher in Case III than in Case I municipalities. Finally, Table 5 also demonstrates that

the urbanized Case III municipalities are home to households with higher average incomes, higher

education levels, and higher shares of foreigners.

Figure 5 shows that the municipalities classified as either Case II or III are mainly concentrated

in the populated coastal areas of southern Norway. Oslo, Bergen, Stavanger, and Trondheim stand

out as Case III municipalities. Case I municipalities are instead concentrated in the rural heartland.

The comparison between the two subsidy regimes reveals that the removal of subsidies in 2019 would

mainly hit Case II municipalities that are less populated and less urbanized than the average Case

II municipality but more affluent and more dependent on commuting than the average Case I

municipality.

Our findings inform ongoing academic and policy debates about the design of subsidy schemes

to promote EV adoption in the long run. First, they suggest that critical mass is a constraint

during the launch stage of EV markets, which can be overcome by purchase subsidies to facilitate

a higher EV adoption in the long-run.

However, second, the observation of critical mass no longer constraining the Norwegian EV
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Table 5: Municipality characteristics by equilibrium case

Case I II III

With subsidies:

Aggregates

Number of municipalities 264 100 58

Share of population in % 25 28 47

Characteristics

Population 4, 941 15, 121 43, 300

Density 12 69 261

Net household income 52, 396 54, 935 60, 017

Bachelor degrees in % 18 21 24

Foreigners in % 11 12 15

Commuters in % 13 20 24

Without subsidies:

Aggregates

Number of municipalities 336 50 36

Share of population in % 39 21 40

Characteristics

Population 6, 232 22, 033 59, 243

Density 20 122 343

Net household income 52, 867 56, 680 61, 381

Bachelor degrees in % 19 22 25

Foreigners in % 11 13 16

Commuters in % 15 23 24

Notes: This table presents aggregate and average demographics by equilibrium case at the municipality level for

the simulation in 2019 with and without subsidies. Included variables are the average population, the population

density per km2, the average household income in EUR, and the shares of individuals holding bachelor degrees,

foreign nationals, and self-reported commuters in the population. Municipality-level characteristics are provided

by Statistics Norway.

market in its later stages suggests that concerns about critical mass can no longer justify subsidies.

All major markets in urbanized regions in 2019 appear to be securely locked onto a path towards

a high-adoption equilibrium. This raises the question how municipalities overcome their critical
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Figure 5: Spatial distribution of municipality by equilibrium case

Notes: This map shows into which of the three equilibrium cases the 422 Norwegian municipalities fall in 2019.

The panel on the left shows the situation with subsidies, while the panel on the right shows the counterfactual

situation in the absence of subsidies.

mass over time. According to our theoretical framework, this succeeds if the number of consumers

with strong preferences for either EVs (α) or the public charging infrastructure (θ) increase over

time. While we do not observe these preferences directly, we are able to scrutinize the factors that

affect them. Tables 8 and 9 in the Appendix show that the number of EV models increased from

10 in 2012 to 28 in 2019. Hence, consumers might find EVs that better suit their needs. Moreover,

popular models like the Nissan Leaf, the Citroen C-Zero, the Peugeot iOn, and the Mitsubishi I-

MiEV already available in 2012 became cheaper over time. In contrast, the new models in 2019 tend

to be heavier and more expensive, which suggests that they offer higher battery capacity and longer

driving ranges in addition to more comfort. These observations are consistent with an upward shift

in α and θ.

Yet, third, we have also shown that subsidies in the more mature market stage trigger positive

feedback loops in Case I municipalities (i.e. those local markets that would otherwise not adopt

EVs in the absence of any policy intervention), for reasons other than critical mass constraints. We

have shown that subsidies effectively shift a meaningful share of Case I municipalities to the locally

stable equilibrium of EV adoption. Relative to the average Case I municipality, the positively

affected municipalites are more populous and more densely populated, with households receiving
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higher incomes and demonstrating a higher propensity to commute. Thus, the continuation of the

current subsidies can be justified if long-term EV market penetration in these regions is a distinctive

policy goal.

Finally, it is worth noting that beneficiaries of the continuation of current nation-wide subsidies

are consumers in high adoption regions likely to adopt EVs even in absence of any policy support.

Thus, shifting towards a localized scheme may allow policy makers to reduce windfall profits and

to increase public spending efficiency by redirecting funds to those municipalities where subsidies

have a noticeable and positive impact on long-term equilibrium attainment.

8 Conclusion

In this paper, we investigate whether the world’s most mature EV market in Norway has overcome

the critical mass hurdles that impede the large-scale adoption of EVs and that justify policy inter-

ventions. Our empirical analysis is guided by a structural model developed by Zhou and Li (2018)

that features both high-adoption and no-adoption equilibria emerging from the interdependence

between the demand for EVs and the supply of complementary charging stations. We estimate

these indirect network effects for consumers’ EV adoption decisions and investors’ charging station

investment decisions using an instrumental variable approach and municipality-level panel data

from 2012 to 2019.

We find that in 2012 when the EV market was in its infancy, almost 20% of the Norwegian

municipalities faced critical mass constraints despite subsidies. About half of them were effectively

trapped in a zero-adoption equilibrium. In stark contrast, under mature market conditions in 2019,

all municipalities subject to critical mass surpass their constraints and are on a stable path to

EV adoption. Importantly, this holds true even when subsidies are abolished. This is particularly

notable because the exemptions from value added and vehicle registration taxes can be up to half

or as much as the full vehicle purchase price (IEA, 2021a). Thus, the goal to move markets beyond

critical mass constraints does not justify the current level of subsidies. Without subsidies, about 60%

of the Norwegian population in 2019 would have already lived in municipalities securely locked into

high-adoption equilibria. Finally, we show that the continuation of EV subsidies may be justified

if a long-term EV market penetration is a distinctive policy goal in semi-urban municipalities that

would otherwise not adopt EVs.

We conclude by discussing some limitations of our study and by indicating directions for future

research. First, we assume that consumers’ utility is only affected by the local supply of charging

stations. Therefore, we neglect potential spatial interactions. However, EV owners who cross
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municipal borders may take into account the supply of charging infrastructure in surrounding

municipalities as well. Similarly, charging station investors may consider the EV stock in an area

that exceeds the municipality where they plan to invest. Overall, the role of spatial spillovers is an

important policy question for future research.

Second, our study focus is on the existence of critical mass constraints in a mature EV market.

Policy makers would greatly benefit from follow-up analyses that investigate alternative EV subsidy

designs in more depth. Our findings suggest that switching from the current, nation-wide subsidy

to localized schemes may allow for better targeting and less windfall profits. We hope that future

research makes progress regarding optimal policy design.
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Appendix A: Tables and figures

Table 6: Charging Station Supply: First Stage

Dependent variable ln(Qmt)

ln(Distance between fuel stationsm) · ln(Fuel Pricet) 1.208∗∗∗

(0.226)

ln(Commutersm) · ln(EV stock−m,t−1) 0.067∗∗∗

(0.015)

ln(∆ Station Costsmt) −0.001
(0.002)

ln(Per capita deficitmt) 0.000
(0.003)

ln(Length of state roadsm) · time trendt 0.006
(0.004)

Observations 3,376

F -Stat 22.01

Controls Y

Year and Municipality FEs Y

Notes: This table presents the first stage results for the IV regression in Table 3. Please note that we use

inverse hyperbolic sine transformations instead of ln(Qmt), ln(Fuel Station Distancem) · ln(Fuel Pricet), and

ln(Commutersm) · ln(EV Stock−m,t−1), and ln(∆Station Costsmt) because there are many zero values in the

respective variables. Standard errors are clustered at the model-municipality and year level. ∗∗∗(∗∗,∗ ) indicates

statistical significance at the 1% (5%, 10%) level.
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Table 7: EV demand: First stage

Dependent variable ln(Nmt) ln(Pjt)

ln(State Roadsm) · ln(Fast Chargers−m,t−1) 0.031∗∗∗ 0.000
(0.002) (0.000)

ln(Shopsm) · ln(Slow Chargers−m,t−1) 0.035∗∗ 0.000
(0.016) (0.003)

ln(Incomemt) −0.083 −0.001
(0.137) (0.025)

Commutersm · Time Trendt −0.082∗∗∗ 0.000
(0.019) (0.004)

ln(Fuel pricet) · ln(Commute Timem) 0.048 −0.001
(0.055) (0.016)

ln(Weight (other brands)) −0.025 −13.914∗∗∗

(4.309) (0.848)

ln(Length (other brands)) 0.330 48.448∗∗∗

(14.222) (2.073)

ln(Fuel Cost (other brands)) 0.041 −0.237
(1.389) (0.258)

ln(Models (other brands)) 0.003 −2.400∗∗∗

(0.785) (0.124)

ln(Weight (own brand)) −0.003 −0.433∗∗∗

(0.130) (0.032)

ln(Length (own brands)) 0.020 2.175∗∗∗

(0.369) (0.082)

ln(Fuel cost (own brands)) 0.001 0.232∗∗∗

(0.046) (0.009)

ln(Models (own brands)) 0.0001 −0.072∗∗∗

(0.020) (0.003)

Observations 55,290 55,290

Conditional F -Stat 53 11,893

Model-Municipality FEs Y Y

Year FEs Y Y

Notes: This table presents the first stage results for the IV regression in Table 2. Please note that we use

inverse hyperbolic sine transformations instead of ln(Nmt), ln(State Roadsm) · ln(Fast Chargers−m,t−1), and

ln(Shopsm) · ln(Slow Chargers−m,t−1) because there are many zero values in the respective variables. Standard

errors are clustered at the model-municipality and year level. ∗∗∗(∗∗,∗ ) indicates statistical significance at the

1% (5%, 10%) level.
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Table 8: Available EV Models, 2012

Model Sales Price Weight Length

500 184 201, 095 903 3.55

C-Zero 511 205, 538 1, 114 3.48

C30 36 266, 360 1, 263 4.27

Focus 3, 661 267, 068 1, 280 4.46

I-MiEV 659 205, 005 1, 110 3.48

iOn 406 203, 898 1, 116 3.48

Leaf 2, 268 271, 565 1, 525 4.45

Mini 169 243, 535 1, 111 3.72

Partner 19 285, 248 1, 410 4.38

SLS AMG 1 3, 041, 214 1, 660 4.64

Weighted average 254,330 1,305 4.23

Notes: This table presents the EV models sold in Norway in 2012 according to the data from the Norwegian

Road Federation. We report total sales per year, together with average price (in 2015 NOK), average curb weight

(in kilograms) and average length of the car (in meters).
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Table 9: Available EV Models, 2019

Model Sales Price Weight Length

500 17 170, 487 936 3.58

Ampera-e 1, 057 295, 939 1, 616 4.16

Berlingo 1 284, 606 1, 424 4.50

C-Zero 122 130, 307 1, 065 3.48

DS 3 Crossback 6 291, 629 1, 304 4.12

e-Golf 9, 197 287, 274 1, 540 4.27

e-Niro 719 334, 477 1, 737 4.38

e-NV200 575 296, 787 1, 613 4.56

EQ ForFour 44 169, 946 1, 125 3.50

EQ ForTwo 68 163, 087 1, 023 2.70

EQC 84 545, 126 2, 420 4.77

e-Soul 302 315, 645 1, 663 4.20

e-tron 5, 377 579, 043 2, 489 4.90

e-up! 769 173, 285 1, 153 3.60

Focus 1, 589 297, 736 1, 319 4.54

i3 4, 851 255, 325 1, 274 4.01

I-MiEV 79 135, 289 1, 090 3.48

iOn 114 147, 653 1, 065 3.48

IONIQ EV 3, 037 220, 217 1, 437 4.47

I-PACE 3, 080 532, 446 2, 133 4.68

Kona electric 3, 450 269, 856 1, 685 4.18

Leaf 6, 127 245, 487 1, 542 4.49

Mini 72 254, 394 1, 207 3.90

Model 3 15, 682 340, 271 1, 838 4.69

Model S 1, 148 598, 285 2, 172 4.98

Model X 1, 966 669, 811 2, 430 5.05

Soul EV 208 205, 866 1, 539 4.15

Zoe 2, 090 221, 119 1, 498 4.09

Weighted average 341,890 1,740 4.48

Notes: This table presents the EV models sold in Norway in 2019, according to the data from the Norwegian

Road Federation. We report total sales per year, together with average price (in 2015 NOK), average curb weight

(in kilograms) and average length of the car (in meters).
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Figure 6: EV sales by municipality per 1,000 households (Norwegian Road Federation).

30



Figure 7: Charging Stations across Norway (NOBIL)
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Appendix B: Data from Statistics Norway

Table 10: Table codes of used variables

Variable Code

Scrapped vehicles 05522

Median household disposable income 06944

Stock of circulating electric vehicles and fleet share 07832

Number of EVs registered before 2012 07849

Consumer Price Index 08183

Electricity production in Norway 08308

Municipal size 09280

Average gasoline price 09654

Residents aged 20-66 who commute out of the municipality 11616

Kilometers of road per municipality 11845

Financial key figures for municipalities 12134
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