WIRTSCHAFTS
UNIVERSITAT
WIEN VIENNA
UNIVERSITY OF
ECONOMICS
AND BUSINESS

EQUIS ) ‘.AACSB <Q“AMBK

accrepitep M AccrEDITED " ACCREDITED

Fully Bayesian Analysis of Multivariate Latent Class Models with an Application to

Metric Conjoint Analysis

Frahwirth-Schnatter, Sylvia; Otter, Thomas; Tuchler, Regina

Published: 01/01/2000

Document Version
Publisher's PDF, also known as Version of record

Link to publication

Citation for pulished version (APA):

Frahwirth-Schnatter, S., Otter, T., & Tuchler, R. (2000). Fully Bayesian Analysis of Multivariate Latent Class
Models with an Application to Metric Conjoint Analysis. (May 2000 ed.) (Forschungsberichte / Institut fir
Statistik; No. 74). Department of Statistics and Mathematics, WU Vienna University of Economics and Business.

Download date: 03. Oct 2022


https://research.wu.ac.at/en/publications/4a5a03f9-bb26-4d1a-bc0e-8b0fffc48065

WIRTSCHAETS
UNIVERSITAT

Fully Bayesian Analysis of
Multivariate Latent Class Models K}
with an Application to Metric

Conjoint Analysis

Sylvia Frahwirth-Schnatter, Thomas Otter, Regina Tuchler

Institut fOr Statistik
Wirtschaftsuniversitat Wien

Forschungsberichte

Bericht 74
May 2000

http://statmath.wu-wien.ac.at/




‘A Fully Bayesian Analysis of Multivariate

Latent Class Models with an
Application to Metric Conjoint Analysis

Sylvia Frithwirth-Schnatter, Thomas Otter,
and Regina Tichler
Research Memorandum No. 74




A Fully Bayesian Analysis of Multivariate Latent Class Models
with an Application to Metric Conjoint Analysis

by
Sylvia Friihwirth-Schnatter, ! Thomas Otter ? and Regina Tiichler 3

May 12, 2000
Abstract.

In this paper we head for a fully Bayesian analysis of the latent class model with a priori
unknown number of classes. Estimation is carried out by means of Markov Chain Monte
Carlo (MCMC) methods. We deal explicitely with the consequences the unidentifiability
of this type of model has on MCMC estimation. Joint Bayesian estimation of all latent
variables, model parameters, and parameters determining the probability law of the latent
process is carried out by a new MCMC method called permutation sampling. In a first
run we use the random permutation sampler to sample from the unconstrained posterior.
We will demonstrate that a lot of important information, such as e.g. estimates of the
subject-specific regression coefficients, is available from such an unidentified model. The
MCMC output of the random permutation sampler is explored in order to find suitable
identifiability constraints. In a second run we use the permutation sampler to sample from
the constrained posterior by imposing identifiablity constraints.

The unknown number of classes is determined by formal Bayesian model comparison through
exact model likelihoods. We apply a new method of computing model likelihoods for latent
class models which is based on the method of bridge sampling.

The approach is applied to simulated data and to data from a metric conjoint analysis in
the Austrian mineral water market.

Keywords. Bayesian analysis, conjoint analysis, latent class models, MCMC methods, model
selection

1 Imntroduction

In the present paper we will address the problem of accounting for unobserved heterogeneity
among repeated measurements of various subjects. We assume that the dependent data arise
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from a multivariate normal distribution where the mean depends on design variables through
a multivariate regression model. A common way of including unobserved heterogeneity into
such a model is the finite mixture or latent class model, where the unknown distribution
of subject-specific regression coefficients is approximated by a discrete distribution with
unknown support vectors and unknown group probabilities. This leads to a multivariate
mixture of normals as marginal distribution for the data. Our interest for this model class
has been motivated by work on accounting for unobserved heterogeneity among consumers
within conjoint analysis. This issue has received considerable attention during the past
years in the marketing community (Allenby and Ginter, 1995; DeSarbo et al., 1992; Elrod
and Haubl, 1997; Hagerty, 1985; Kamakura, 1988; Kamakura et al., 1994; Lenk et al., 1996;
Wedel and Steenkamp, 1991).

The area, however, is also of greatest interest from a statistical point of view. Involving
highly multivariate mixtures with an unknown number of components, it provides an excel-
lent testing ground for statistical as well as computational advances made in these fields.

In this paper we head for a fully Bayesian analysis of the latent class model. Estimation is
carried out by means of Markov Chain Monte Carlo (MCMC) methods (see e.g. Dieboldt
and Robert, 1994 and Frithwirth-Schnatter, 1999a for a general discussion of MCMC estima-
tion of mixture models). The unknown number of classes is determined by formal Bayesian
model comparison through exact model likelihoods.

Such a fully Bayesian analysis of the latent class model has — at least in principle — been
tried before, as it could be viewed as a special case of the finite mixture of generalized
linear models with random effects discussed in Lenk and DeSarbo (1999) and Allenby et al.
(1998). However, our approach differs from these in various respects. We deal in a different
way with the unidentifiability of the latent class model and we use an alternative method
for computing the model likelihood.

It is well known, that the latent class model, like any model including discrete latent vari-
ables, is only identified up to permutations of the labelling of the groups. The full un-
constrained posterior of the latent class model with K classes is multimodal with at most
K! modes. When applying MCMC methods to such a posterior, we have to be aware of
the problem of label switching which might render estimation of group specific quantities
meaningless. Allenby et al. (1998) and Lenk and DeSarbo (1999) apply a standard or-
der constraint on the weights of the mixture to circumvent the problem. The influence of
constraints on the shape of the full constrained posterior has been investigated only re-
cently (Friibwirth-Schnatter, 1999a). It turns out that only a constraint which respects the
geometry of the posterior will restrict the posterior to a subspace with unique labelling.

Because of these problems with constrained estimation we start with MCMC estimation
of the unconstrained latent class model using the random permutation sampler suggested
in Frithwirth-Schnatter (1999a). We will demonstrate that a lot of important information,
such as e.g. estimates of the subject-specific regression coefficients, is available from such an
unidentified model. Furthermore, the MCMC output of the random permutation sampler
is used to estimate the marginal model likelihood in order to compare models, differing e.g.
in the number of classes. We apply a new method of computing model likelihoods for latent
class models which is based on the method of bridge sampling (Meng and Wong, 1996).
In Friithwirth-Schnatter (1999b) this method has been applied to computing the model
likelihood for a general mixture and switching model and clearly outperformed alternative



methods such as the candidate’s formula (Chib, 1995) or reciprocal importance sampling
(Gelfand and Dey, 1994). Only for the ,best” model we start to think about identification.
We explore the output of the random permutation sampler in order to find identifiability
constraints which respect the geometry of the posterior. These constraints are then included
into the permutation sampler in order to obtain information on group specific parameters
and weights.

The outline of the paper is as follows. In Section 2 we discuss the Bayesian estimation of
the latent class model and the impact of the unidentifiability problem. Section 3 presents
MCMUC estimation both of the unconstrained and the constrained latent class model. Model
selection for latent class models and a new method of computing model likelihoods is outlined
in Section 4. In Section 5 and Section 6, respectively, the suggested approach is applied
to simulated data and data from a metric conjoint analysis in the Austrian mineral water
market.

2 Bayesian Analysis of the Multivariate Latent Class
Model

2.1 Notation and Specification

We start by defining the latent class model in a way that is well known from linear mixed
modelling:

vi=Zia+ Wb +e;, e ~N(,R) (1)

where y; is a vector of T; repeated measurements for subject ¢, o are fired effects which are
constant for all subjects and f3; are random effects which due to heterogeneity are different for
each subject. Z; and W, are the design matrices for the fixed effects & and the random effects
B;, respectively. Within latent class models the unknown distribution 7(/3;) of heterogeneity
is approximated by a discrete distribution with unknown support vectors 8C, ..., 8% and

unknown group probabilities n = (m1,... ,nk). Such a distribution could be written as:

Be, if S =1,
Bi= 4 : (2)
BS, if S; = K,

if we introduce a discrete latent group indicator S; taking values in {1, ... , K'} with unknown
probability distribution Pr(S; =k) =m, k=1,... ,K.

In what follows we will assume that the model is identified up to relabelling the number of
the group indicator. The general model appearing in (1) is not necessarely identified in this
sense for arbitrary choices of Z; and W;. To give an example, the model is not identified, if
some columns of Z; and W; are identical. .

Unknown parameters which have to be estimated from the data are the fixed effects , the
group specific parameters 37, . .. , 3%, the group probabilitiesn = (n, ... ,nx) and unknown
parameters 6 appearing in the definition of the observation variance R;. These parameters



will be summarized by ¢: ¢ = (o, 5F,...,Bg,n,0). Within a Bayesian approach the latent
group indicator SN = (Sy,...,Sn) is viewed as missing data and is estimated along with
the model parameter ¢. This data augmentation is quite common within Bayesian analysis
(see e.g. Tanner, 1993). Bayesian estimation of the model is based on the hierarchical
structure of the model:

1. Conditional on ¢ and SV, the complete data likelihood f(y1, ... ,yn|SV,¢) factor-
izes into the product of normal distributions where the distribution of each y; de-
pends on SN through the group specific parameter, only: f(yi,...,yn|SN,4) =

I, f(%ile, B8, 6).

2. Conditional on ¢ the ,prior” of SV is given by the discrete probability distribution
Pr(Si=k) = 77k and the assumption that S; and S; are pairwise independent, therefore

SN!¢ nk__l nk y Ni = #{S; = k}.
3. Finally, ¢ has a prior distribution m(¢).

Note that the ,prior” on SV appearing in the second level is not a subjective prior, but
part of the model. Only the prior on ¢ appearing on the third level has a subjective
flavour. In this paper the focus lies on Bayesian estimation in situations where we lack
strong prior information. From a theoretical point of view, being fully non-informative
about ¢ is possible only for the fixed eflects a and the variance parameter 0, if 4 is class
independent. Theoretically, being non-informative about 3%, ... , 3%, n and class dependent
variance parameters 8 is not possible, as improper priors on G7,...,8% and 7 result in
improper posteriors (Diebolt and Robert, 1994; Roeder and Wasserman, 1997).

For mixture models 7 is commonly assumed to be independent from the remaining parame-
ters of ¢. A ,natural” prior distribution m(n) for 7 is a Dirichlet prior D(egq, . .. ,€ox), which
is the conjugate prior in the complete data setting, where SV is assumed to be known. A
common choice is eg; = 1 which leads to a uniform prior on the unit simplex. We may
select eg; bigger than 1 to exclude empty classes a priori. For the fixed effects a we use a
normal prior N(co,Co). Concerning the group specific parameters 87, ... , 3%, we assume
that they are independent a priori. In the context of mixture modelling it is now common
practice to use hierarchical priors for being weakly informative about group specific param-
eters (see e.g. Richardson and Green, 1997; Roeder and Wasserman, 1997; Stephens, 1997):
7(BF) x N(by, Bo). This allows different parameters for the various groups, however with
a slight restriction expressed by the prior. Furthermore this prior is invariant to relabelling
the number of the groups. The prior on the variance parameter § depends on the model
chosen for the observation variance R;. If R; = ¢?- I with I being the identity matrix, then
a “natural” prior for o2 is an inverted gamma prior ~ IG(Veg, Gep), Which is the conjugate
prior in the complete data setting, where S is assumed to be known.

2.2 Posterior Analysis and Label Switching

Using Bayes’ theorem we obtain from the hierarchical structure of the model that the non-
normalized posterior distribution 7 (¢, SN |y") of the augmented vector 3 = (¢, S") is pro-




portional to the following product:

(¢, SN |yN) < f(y"V SN, ¢)w (SN |$)m(4), (3)
N
f(le‘S'N, ¢) = Hf(yila)ﬁg’g)a

=1

where ¥V = (y1,...,yn). For models including a latent, discrete structure such as SV
the unconstrained posterior has some characteristic properties (see Stephens, 1997; Celeux,
1998; Friihwirth-Schnatter, 1999a). The unconstrained parameter space contains K! sub-
spaces, each one corresponding to a different way of labelling the groups. The ,complete
data likelihood” f(y™V|SV, ¢), and the ,prior” 7(SV|4) are invariant to relabelling the groups.
Therefore, if the prior 7(¢), is invariant, too, the unconstrained posterior typically is mul-
timodal and invariant to relabelling the groups. This special structure of the posterior has
important consequences for estimation. The unconstrained model is not identified in a strict
sense. In section 3 we use MCMC methods to obtain a sample (SV,#)™), ..., (SV,4)M)
from the unconstrained posterior. However, we do not know which of the labelling sub-
spaces a sampled value (SV, ¢)(™) belongs to, since label switching (jumping between the
various labelling subspaces) might have occured. Thus we are not allowed to estimate func-
tionals f(3) of ¥ = (SN, $) which are not invariant to relabelling the groups from MCMC
simulations from the unconstrained posterior.

Note that a lot of information is available from MCMC simulations from the unconstrained
posterior without introducing a unique labelling, as we are allowed to estimate functionals
f(¥) of ¥ = (SV, ¢) which are invariant to relabelling of S;. Straightforward examples are
parameters which are common to all groups, such as the fixed effects a or common variance
parameters 6. Further examples are moments of the distribution of heterogeneity, e.g. the
mean or the covariance matrix:

K K
ag= Bfm, Q=) BE(BE)m — apas.
k=1 kel
These moments may be estimated from the MCMC simulations by:
| MK . 1 MK , ,
=37 2L B0, Q=7 33 (B0 - gy

Moreover, subject specific estimates of the random effects 8; which may be written as:
K
Bi=Y_ BEI(S),
k=1

LY
Where Ii(S;) = 1 iff S; = k, and obviously are invariant to relabelling can be derived from
an unidentified model. An estimate of §; is obtained from the MCMC simulations by:

., 1
Bi= 7 Y (BE™, 5= 5™,

m=1

Finally, it is possible to predict the behaviour of each subject under designs Z¥, W different
from the ones used for estimation.



In order to estimate functionals f(v) of ¥ = (S, ¢) which are not invariant to relabelling
the groups such as 87,...,B%, n or the classification probabilities Pr(S; = k|y") we have
to identify the model in the sense that we allow for MCMC simulations from a unique
labelling subspace, only. A common way of dealing with the problem is to include an
identifiability constraint. An arbitrary constraint, however, does not necessarily induce
a unique labelling, if it ignores the geometry of the unconstrained posterior distribution
(see Friihwirth-Schnatter, 1999b). Only a carefully selected constraint will separate the
labelling subspaces and induce unique labelling. We will demonstrate in our case studies,
how suitable identifiability constraints may be found by exploring MCMC simulations from
the unconstrained posterior distribution.

If the model has been identified, estimates of group specific parameters are simply the mean
of the simulations, whereas the classification probabilities Pr(S; = k|yV),k =1,... , K may

be estimated for all subjects 7 from the sampled values S}m) ,m=1,...,M by

. 1 m
Pr(S: = kly") = 37 #{S!™ = k}

3 Estimation of the Latent Class Model via MCMC Meth-
ods

3.1 MCMC Methods

A common way to deal with complex posterior distributions such as the posterior (3) is to
sample from the posterior by some MCMC method (see e.g. Smith and Roberts, 1993, for
a general introduction to MCMC methods). Applications of MCMC methods to classical
mixture models appear e.g. in Diebolt and Robert (1994) and Richardson and Green (1997).
MCMC techniques for sampling from a complicated posterior density split the joint unknown
parameter into blocks and sample then from the conditonal posterior densities of each block
given the fixed values for the other blocks. Sampling from the posterior of a latent class
model is possible within the following four blocks:

(i) Sample S¥ from 7(SN|n, e, 5C,...,0%,0,y")

(ii) Sample 7 from =(n|SV)
(iif) Sample the fixed and the group specific effects from 7 (e, 87, ... , 8%|0, SN, y™)
v

(iv) Sample the variance parameters § from 7(6|e, 57,... ,0%, SV, y")

Details concerning the structure of these posteriors and the method for sampling from
them will be given in subsection 3.2. Most of this material is standard with the excep-
tion of step (iii), where the fixed effects o and the group specific parameters 37,... , 3%
are sampled jointly within one block. We do not recommend to sample these parame-
ters in two different blocks from the conditional posteriors m(|3F,...,8%,0,5",y") and
7(8%,...,B%a,8,SN, y"), respectively, as suggested e.g. in McCulloch and Tsay (1994)
for the related MSAR-model. If there exist strong correlations between columns of Z; and
columns of W;, such separate sampling will converge slowly. We will show in subsection 3.2




that joint sampling of all effects is possible, as conditional on S™ the latent class model may
be rewritten as a classical regression model.

There exist various ways to run through this scheme and the suitable method for MCMC
sampling depends on what kind of inference is of interest. An unconstrained model may be
estimated by unconstrained Gibbs sampling running through step (i)—(iv) without any con-
straint on the group specific parameters. Unconstrained Gibbs sampling, however, does not
explore the whole unrestricted parameter space, but tends to stick at the current labelling
subspace with occasionally switching to other labelling subspaces. Some of the labelling sub-
spaces will never be visited. An alternative method of estimating an unconstrained model
is random permutation sampling (Frithwirth-Schnatter, 1999a). This method is simply an
unconstrained Gibbs sampler concluded by a randomly selected permutation p(1),... , p(K)
of the current labelling 1,..., K. After sampling ¢ by an unconstrained Gibbs sampler,
group dependent parameters are permuted in the following way:

(51077:BIC§) = ( pG(I)""v pG(K))a (4)
(M5 5mK) = (Mo(a)s - - - s Ma(K))>
(Stye-- Sw) = (p(Si)s - »9(5w)):

Parameters which are group independent such as a and 6§ are not permuted. The permuted
parameters are the starting point for the next Gibbs step. This sampler is an appropriate
method for exploring the whole space of the unconstrained posterior as it delivers a sample
from the unconstrained posterior where balanced label switching occurs and all labelling
subspaces are visited with the same probability.

To estimate a constrained model an identifiability constraint may be introduced into the
sampling scheme. One way of imposing the identifiability constraint is to introduce some
truncation or rejection method into step (iii) in order to obtain simulations which fulfill
the constraint. This constrained Gibbs sampling is the standard method applied so far
(Allenby et al., 1998; Lenk and DeSarbo, 1999). An alternative method for constrained
sampling is permutation sampling under an identifiability constraint (Frithwirth-Schnatter,
1999a). Unconstrained Gibbs sampling is concluded by a permutation as in (4), but this time
the permutation is selected in such a way that the identifiability constraint is fulfilled. We
mentioned already that an arbitrary constraint does not necessarily induce a unique labelling
and a bias toward the constraint may be introduced. The poorness of the constraint may
go undetected if we use constrained Gibbs sampling and the sampler sticks at the current
labelling subspace. The permutation sampler, however, will indicate this fact and exhibit
label switching. In this case a more suitable identifiability constraint may be derived from
the MCMC output of the random permutation sampler.

3.2 The Structure of the Conditional Posteriors

We now discuss the structure of the various conditional posterior densities and the sampling
from these posteriors in more detail.

Step (i) is a standard step occuring in mixture models and can be carried out as discussed




in Diebolt and Robert (1994). From Bayes’ Theorem we obtain:
N
(51, 7SN|yN7¢) & H f(yile, ﬂg:e)“(si!n)-
i=1

As S3,...,SN are conditionally independent given ¢ and yN, S; may be sampled from the
discrete distribution 7(S; = klyi,¢), k=1,... ,K:

(S: = klyi, ¢) < f(u:lBF, @, 0) - mx, (5)

where f(y:|8F,a,0) is the density of a normal distribution with mean Z;a + W3¢ and
variance R;(9).

Step (ii) is a standard Bayesian exercise. Given the Dirichlet prior D(eos,. .- , €0k ) the
posterior 7(n|S™) of 7 is D(eo1 + Ny, ... ,eox + Nk), with Ny = #{S; = k}.
In step (iii) we sample the fixed effects o and the group specific parameters BG,...,B¢

jointly within one block. Conditional on S™ the latent class model is a classical regression
model:

y; = Xsaf +€;, €~ N(O, Rl),
with parameter o* = (o, 87, ..., B%) and

X=(z wp® ... wo®),

where we used the coding D,(-k) =1iff S; =k, for k = 1,...,K. The posterior of a* =
(e, BS,... , BZ) is given by o*|y™, 8 ~ N(aw, Ax), where

N
Av = X RO Xi+ A7) (6)

1=1

N
any = An(>_ XiR'yi + A7 ao).

=1

The joint normal prior N(ao, Ag) for o* is constructed in an obvious way from the normal
priors N(bg, By) and N(co, Co) of the group specific parameters 3%, ..., B%, and the fixed
effects o, respectively. The information matrix Ay has a special structure which can be
exploited for efficient sampling. If no fixed effects a are present, AN as well as Ay are block
diagional and we may sample all group specific effects independently. If fixed effects o are
present, then Ay as well as Ay contain a submatrix which is block-diagonal. Therefore joint
sampling of o* = (e, 8%,... ,B%) is possible by sampling the fixed effects from the marginal
posterior N(cn,Cn), where the group specific effects are integrated out, and by sampling the
group specific effects independently from the conditional distributions N(bn (), BN ),k =




1,..., K. The moments of these densities are given by:

N
S WE D + B3
i=1

N -1
Bri = [Z W, R7'w:D{" + Bal} :

i=1

by i(a) = Bnk

bl

N
ey =Cn [Z Z;R,-_l(yi - I/Vz'bN,S,-(O)) + Co_lcojl y

i=1
N -1
Cn = [Z Z;R7'(Ri — WiBnsW )R Zi + Co'l] ;
=1
where §; = y; — Z;c.
Step (iv) depends on the model chosen for the observation variance R;. If R; = o2 - I with

o? being group independent, then:

03|a,ﬂ1G’~ cey gayN ~ IG(VE,NaGe,N),

N N
vew = veo+ N - (T)/2 e = Geo +1/2(3 llys = Zia = Wi 1.

=1 =1

4 Issues in Model Selection

Model selection is based on the Bayesian model discrimination procedure where various mod-
els M,,..., Mg are compared through the posterior probability of each model (Bernardo
and Smith, 1994):

PMly™) < f(y,.- - ,yn| M) P(Ma). (7)

The factor L(y™ |Mi) := f(¥1,- - . ,yn| M) is called model likelihood and quantifies evidence
in favour of a model given the data. For a latent class model the model likelihood is given
by the following integral of the marginal likelihood L(ys,- - - , yn|@) with respect to the prior

7(P):

L) = [ Lo unlé)r(9)ds ®
where an explicit formula for the marginal likelihood L(y1,--- ,yn|¢) is available:
N K
Llys,-.onl®) =[] (Z FalG 0, 0) nk> | (9)
=1 k=1

The computation of the model likelihood has proven to be challenging for models with
latent processes such as the latent class model. Model likelihoods have been estimated from
the MCMC output using methods such as the candidate’s formula (Chib, 1995), importance
sampling based on mixture approximations (Frithwirth-Schnatter, 1995), combining MCMC

9




simulations and asymptotic approximations (Gelfand and Dey, 1994; DiCiccio et al., 1997)
and bridge sampling (Meng and Wong, 1996). The application of these methods to compute
the model likelihood from the MCMC output for switching and mixture models has been
discussed in detail in Frihwirth-Schnatter (1999b) with the following main results: first,
estimation of the model likelihood turns out to be sensitive to the problem of label switching.
Especially the candidate’s formula (Chib, 1995) should not be applied, if label switching
is present, and is a suitable estimation method only for identified models. Second, it is
not necessary to identify the model in order to compute the model likelihood. This is very
convenient, if we want to compare a wide range of values of K. Third, the best result
with the lowest standard error is obtained by using the method of bridge sampling where
the MCMC sample obtained by random permutation sampling is combined with an iid
sample from an importance density ¢(¢). The importance density g(¢) is constructed in an
unsupervised manner from the MCMC output (¢1), ..., ™) of the random permutation
sampler using a mixture of complete data posteriors:

ML

g(¢) = 1/M Y n(gl(SM)™), ¢, M) (10)

m=1

The bridge sampling estimator outperforms other methods such as importance sampling or
reciprocal importance sampling for the following reason: whereas importance sampling as
well as reciprocal importance sampling are known to be sensitive to the tail behaviour of the
importance density g(¢), the bridge sampling estimator turns out to be much more robust
in this concern. In the present paper we will apply this method to latent class models. For
further details the reader is referred to Frithwirth-Schnatter (1999b).

Within the latent class model the Bayesian approach could be applied to various issues
arising in model selection, the most important one being the selection of the the number
of classes. Note that this testing situation may result in a non-regular problem. Selecting
the number of groups is not possible within the classical framework of maximum likelihood.
Although a mixture model with K classes could be viewed as that special case of a mixture
model with K + 1 classes, the regularity conditions for justifying the x*-approximation to
the likelihood ratio statistic do not hold, as the group specific parameters are unidentified
under the hypothesis that there are really K groups.

In one of our case studies the Bayesian approach will be applied to further issues arising in
model selection such as testing for heterogeneity of selected components. If the marginal
densities of a certain component ﬂf;, of the group specific parameters 3%, ... ,8% overlap
for all groups such as in figure 13, we could formulate the hypothesis that the component
,Bf; is fixed rather than random: ﬂfr =...= ﬂIG\,—’r. This hypothesis is tested against
the hypothesis of a random component by comparing the model likelihoods. In order to
obtain the model likelihood of the new hypothesis, we have to rerun MCMC estimation
under the assumption that ,6_?, is fixed (the corresponding column in model (1) has to be
deleted from W; and added to Z;). Hypotheses involving more than one component such as
B¢ =...=p%,, B, =...= Bf, are tested in a similar way.

A final application will be variable selection. If the marginal density of a certain component
a, of the fixed effects cover 0, we could formulate the hypothesis that this effect is not signif-
icant and should be deleted from the model: @, = 0. Again, this hypothesis is tested against
the hypothesis that a, should be kept in the model by comparing the model likelihoods.
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6.4 Estimation within Unidentified Models

In section 2.2 it was demonstrated that subject specific parameter estimates may be ob-
tained from an unidentified model. Here we illustrate how the latent class model captures
consumer heterogeneity for different numbers of classes. We take advantage of our Bayesian
approach and investigate the posterior densities of implied choice probabilities for different
offers. Throughout this section it is assumed that choice probabilities may be derived from
preferences directly using a multinomial logit model. The following is based on a choice set
offering the two major brands Romerquelle and Véslauer at a price of 5.9, their competitors
Juvina and Waldquelle at a price of 3.9 and finally the dummy brand Kronsteiner at a the
price of 3.2 (all prices in ATS).

The columns of Figure 8 contain the marginal choice probabilities for the Rémerquelle, the
Juvina and the Kronsteiner offer, respectively. The rows correspond to different numbers of
classes. Comparing the distributions of choice probabilities for the Rémerquelle offer in the
first column, the detrimental effect of choosing too low a number of classes becomes obvious.
The marginal density obtained from the model with two classes suggests that the major part
of the sample has a near zero choice probability for the Rémerquelle offer. On the other
hand substantial mass of the distribution is in the region with a choice probability greater
than 0.6. The optimal choice of nine classes, in contrast, reveals that only little mass of the
distribution can be found in the region of high choice probability for the Rémerquelle offer.
Similar but less extreme differences between the different solutions arise for the Juvina and
the Kronsteiner offer.
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Figure 9: Choice probabilities from a logit model - bivariate representations

Figure 9 contains bivariate marginal densities for the choice probabilities of the Romerquelle
and the Véslauer offer. Notice the 45 degree frontier due to the fact that we are dealing with
choice probabilities from a multinomial logit model. Moreover, the scaling of the density
axis's adapted to the number of classes assumed in the three dimensional plots. Again it is
obvious, possibly even more than from the univariate density plots that too low a number
of classes will lead to very different conclusions than the optimal choice. The solution with
two classes suggests that most of the mass is concentrated at the point of near zero choice
probabilities for the Rémerquelle and the Véslauer offer. Moreover, there seems to be some
mass in the area of high choice probabilities for the Romerquelle offer accompanied by low
choice probabilities of the Véslauer offer. Increasing the number of classes to three changes
the picture dramatically. Again most of the distributional mass is concentrated at the
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