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Abstract

In the present paper we study switching state space models from a Bayesian point of view. For
estimation, the model is reformulated as a hierarchical model. We discuss various MCMC meth-
ods for Bayesian estimation, among them unconstrained Gibbs sampling, constrained sampling
and permutation sampling. We address in detail the problem of unidentifiability, and discuss
potential information available from an unidentified model. Furthermore the paper discusses
issues in mode] selection such as selecting the number of states or testing for the presence of
Markov switching heterogeneity. The model likelihoods of all possible hypotheses are estimated
by using the method of bridge sampling. We conclude the paper with applications to simulated
data as well as to modelling the U.S./U.K. real exchange rate.

Keywords: Bayesian analysis, bridge sampling, Markov switching models, MCMC methods,
model selection, state space models

1 Imntroduction

State space models are a well-studied tool to analysize time series y = (y1, ..., yn), where the
distribution of y; depends on a latent continous state process ™ = (zo,...,Zn). A switching
state space model is obtained, if we assume that additionally to the latent, continous process
2N a discrete latent switching variable I, taking values in {1, ..., K} influences the distribution
of y:. Such models have been studied by various authors (e.g. Harrison and Stevens, 1976;
Shumway and Stoffer, 1991; Kim, 1993, 1994; Carter and Kohn, 1994, 1996; Shephard, 1994).
Kim and Nelson (1999) present an excellent review of the current state of art.

A typical way of including a switching mechanism into a Gaussian state space model is to
assume that one of the variances, e.g. the variance appearing in the observation equation, is
heteroskedastic and switches between various values 61, .. ., 0}, depending on the state of the
latent process I; (Pefia and Guttman, 1988):

2y = Fiee 1 + ur + Gewy, w; ~ N(0, Diag(c?,...,02)),
ye = Hizo+v,, v ~N(0,6]).

Alternatively, one or all of the variances o2, ..., 02 of the transition equation may be Markov

switching heteroskedastic (Kim, 1993; Engle and Kim, 1999). Another way of including a
switching mechanism is to assume that a drift term is present in the transition equation which
switches between various values 8{,...,6% (Kim, 1994). For an application of the related
switching dynamic factor model to modelling business cycles see Kim and Nelson (1998) and
Kaufmann {1999); an interesting application of a state space model with two switching mech-
anism to audio and signal processing appears in Godsill (1997).

Estimation of a switching state space model is far from trivial. The classical maximum likelihood
approach can not be applied directly, as the marginal likelihood where both latent processes
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z™ and IV are integrated out, is not available in a closed form. Approximate filters which lead
to an unknown approximation error have been used e.g. in Kim (1993, 1994). Alternatively, a
Bayesian approach can be applied by means of Markov chain Monte Carlo (MCMC) methods
(see e.g. Smith and Roberts, 1993 for a general introduction to MCMC methods). The design
of suitable MCMC methods to estimate a Gaussian state space model with switching has been
studied in various papers. A general discussion may be found in Carter and Kohn (1994, 1996),
Shephard (1994), and Kim and Nelson (1999). MCMC sampling for specific Gaussian state
space models with switching appear e.g. in Godsill (1997), Kim and Nelson (1998), Engle and
Kim (1999), and Kaufmann (1999). In section 2 of the present paper we address once more
the issue of Bayesian estimation of switching Gaussian state space models via MCMC methods.
Emphasis will lie on the unidentifiability of switching state space models and its implication for
MCMC estimation. We will discuss the problem of label switching, the importance of finding
a sensible identifiability constraint, and the fact, that important information such as smoothed
estimates of the latent state process £V or estimates of time varying parameters will be available
without the need to identify the model.

In section 3 we head for a fully Bayesian analysis of switching Gaussian state space models
discussing issues in model selection such as selecting the number of states and testing for the
presence of a hidden Markov switching process. We will apply the method of bridge sampling
to compute the model likelihood for a switching Gaussian state space model.

Applications to simulated data appear in section 4. The paper is concluded with an application
of a switching state space model to analyzise the U.S./U.K. real exchange rate in section 5.

2 DBayesian Estimation of a Gaussian State Space Model
with Switching

Unknown parameters which have to be estimated from the data are the fixed parameters 6,
which are cammon to all states, the state specific parameters 61,. .., 05{, and the parameter 5
appearing in the definition of the distribution of IV = (I, ..., In). These parameters will be
summarized by ¢: ¢ = (§€,6{,...,6%, 7). Within the Bayesian approach both the discrete,
latent process IV as well as the continous, latent process £V are viewed as missing data and
estimated along with the model parameter ¢. In what follows we are going to estimate the
augmented parameter vector ¢ = (¢, IV, V) by sampling from the posterior density m(¥|y")
by means of MCMC methods.

2.1 Model structure and Choice of the Priors

Bayesian estimation of the model is based on the hierarchical structure of the model:

1. Conditionally on known realisations 2V and I¥ of the continous state process and the
switching process, respectively, and on a known model parameter ¢ the observations are
independent with the distribution of y; depending on z; and I;, only. The ”complete data
likelihood” F(y™ |zN, IV, ¢) given 2V, IV and ¢ reads

N
FN 1N, N, ¢) = [ £ (wil=e, 61, 6),

t=1
where fy(y:|-) is the density a normal distribution.

2. Conditionally on a known realisation IV of the switching process and on a known model
parameter ¢ the density of the (prior) distribution of the continous latent process zV =
(zo,21,...,2N) is given by:

N

n(@V|IV, ¢) = [] fn (zelze-1,6],,6%)m(z0l0).

t=1



3. Conditionally on a known model parameter ¢ the density of the (prior) distribution of
the latent switching process IV depends on 7, only: 7(IV|¢) = n(IV ).

4. Finally, ¢ has a prior distribution 7(¢).

Note that the ,,prior” on /" and zV appearing in the second and the third level are not
subjective priors, but part of the model. One possible prior structure on IV is the ezchangeable
prior, where I; is assumed to be an iid process with Pr{l; = j} = n;,j = 1,..., K. This prior
has been used in combination with Gaussian state space models e.g. in Shumway and Stoffer
(1991). An alternative choice is the Markovian switching prior where I is assumed to be a
stationary Markov process with discrete state space {1,..., K} and Pr{l; = j|L;—1 = i} = ;.
This structure has been introduced by Hamilton (1989) and has since been widely used in the
time series literature. It is combined with Gaussian state space models e.g. in Kim (1994),
Engle and Kim (1999) and Kim and Nelson (1998, 1999).

Only the prior on ¢ appearing on the fourth level has a subjective flavour. From a theoretical
point of view, being fully non-informative about ¢ is possible only for the state independent
parameter €. Being fully non-informative about 8, . ..,8% and 7 is not possible. For switching
models it is common to assume that n = (n1.,..., k), where 5;. = (n:1, .. ., %iK), is independent
from the remaining parameters of ¢ and that all conditional transition distributions 7;., ¢ =
1,..., K, are independent a priori from each other. A , natural” prior distribution =(#;.) for
n:. is the Dirichlet prior which is the conjugate prior in the complete data setting, where IV
is assumed to be known. Concerning the state specific parameters 47, . ..,0%, we assume that
they are independent a priori and that each 6 has the same prior distribution depending on
hyperparameters which are not state specific. This allows different parameters for the various
states, however with a slight restriction expressed by the prior. Furthermore this prior is
invariant to relabeling the states.

2.2 Bayesian Posterior Analysis and the Problem of Label Switching

From the hierarchical structure of the model we obtain that the (unconstrained) posterior
density 7(|y") is given by:

w(@ly™) o« FV [N, IV, g)m(=N IV, $)m (1N |$)m ().

For models including a latent, discrete structure such as I the unconstrained posterior has
some characteristic properties (see Stephens, 1997; Celeux, 1998; Frihwirth-Schnatter, 1998).
The unconstrained parameter space contains K'! subspaces, each one corresponding to a different
way of labeling the states. The ,,complete data likelihood” f(y" |2V, IV, ¢), and the ,,priors”
n(zN|IV, ¢) and n(IV|g) are invariant to relabeling the states. Therefore, if the prior 7(¢), is
invariant, too, the unconstrained posterior typically is multimodal and invariant to relabeling
the states. This special structure of the posterior has a lot of consequences for estimation. The
unconstrained model is not identified in a strict sense. When sampling from the unconstrained
posterior via MCMC methods, we do not know to which of the labeling subspaces the sampled
value belongs. Therefore, we do not know to which state a sampled parameter belongs as
label switching (jumping between the various labeling subspaces) might have occured. Thus
we are not allowed to estimate functionals f(¥) of 9 which are not invariant to relabeling
the states from MCMC simulations from the unconstrained posterior. Typical examples are
estimation of the state specific parameter such as 67, . . ., 01{{ and 7 or estimating the probability
Pr(I; = jlyV) of being in state j at time t.

2.3 Estimation without Introducing Unique Labelling

Note, that important information is available from MCMC simulations from the unconstrained
posterior without introducing unique labeling, as we are allowed to estimate functionals f(¢) of
¥ which are invariant to relabeling the states of I;. This is important especially for applied time
series modelling, as ,,smoothing” in terms of estimating the latent continous process ™ from




the posterior 7(z"V|y") is possible without caring about identifiability. Smoothed estimates
24§ of z;, for instance, are simply given by:

l'th =35 Z(-’B (m)

m_l

where (zV)(1), ... (2V)M) are MCMC simulations from the unconstrained posterior. This
estimate is unaffected by label switching, because the marginal posterior 7(z™ [y) is invariant
to relabeling the states of I.

An other important application is estimation of time varying parameters. In practice, the
discrete values 61, ..., 6% often will be just an approximation to modelling the time varying
nature of a certain model parameters §; of the state space model (Harrison and Stevens, 1976):

&=0, if L=j
From rewritting this functional in the form

K

Jj=1

where for each j S,(j ) = 1, iff I, = j and zero otherwise, invariance to relabeling the states
of I is obvious. Therefore it is possible to obtain individual estimates of & for each ¢ from
the MCMC output of an unconstrained model by averaging (8)(™), where s = I,(m), over all
m=1..,M. ‘

Finally, estimation of state independent parameters € is possible without carying about iden-
tifiability.

2.4 Estmmation from an Identified Models

In order to estimate functionals f(v) of ¥ which are not invariant to relabeling the states such
as 81,...,0L, n or Pr(l, = j|y™) we have to identify the model in the sense that we allow for
MCMC s1mulatlons from a unique labeling subspace, only.

A common way to do this is to include an identifiability constraint. However, the problem
with identifiability constraints is they not necessarily induce a unique labeling, if the geometry
of the unconstrained posterior density is ignored (see Frithwirth-Schnatter, 1998). Only a
carefully selected constraint will separate the labeling subspaces and induce unique labeling.
We will demonstrate in our case studies, how suitable identifiability constraints may be found
by exploring MCMC simulations from unconstrained posterior densities.

2.5 MCMC Methods

The design of suitable MCMC methods to generate a (dependent) sample O @ from
the posterior m(¥|y" ) of a dynamic linear model with switching has been studied in various
papers (Carter and Kohn, 1994, 1996; Shephard, 1994; Godsill, 1997; Kim and Nelson, 1998;
Engle and Kim, 1999). MCMC techniques for sampling from a complicated posterior density
split the joint unknown parameter into blocks and sample then from the conditonal posterior
densities of each block given the fixed values for the other blocks. Sampling ¥ from the posterior
of a switching Gaussian state space model is possible within the following four blocks:

(i) Sample IV from #(IN |2V 7, 6,67, y")
(ii) Sample 7 from m(n|I")
(iii) Sample (6], ...,6%,6°) from n(61,...,6%,6C "N, IN V).

(iv) Sample zV from m(z™|IV,6],..., 6%, 4V)



Step (i) and (ii) are standard steps occuring for MCMC estimation of any model including a
latent Markov switching variable. Step (i) may be carried out in a multimove manner as in
Carter and Kohn (1994, 1996), Shephard (1994), or Chib (1996). Sampling 7 is completely
standard, as the conditional posterior =(n|¢, IV, zV,y") depends only on IV and each condi-
tional distribution #;.,...,nk. follows a Dirichlet distribution. The precise procedure applied
within step (iii) depends on the specific Gaussian state space model under consideration. For
many important examples of state space models such as the basic structural model, the dy-
namic trend model (Harvey, 1989) or for regression models with random coefficients, H;, F3,
G: and u; are predetermined, and the variances are the only model parameters. For such a
conditionally heteroscedastic Gaussian state space model the variances are conditionally inde-
pendent inverted gamma random variables and easy to sample. Further blocking is necessary,
if F; or H; depend on unknown model parameters. Finally, step (iv) may be carried out by one
of the multimove methods discussed in Carter and Kohn (1994), Friithwirth-Schnatter (1994)
and DeJong and Shephard (1995).

There exist various ways to run through this scheme and the suitable method for MCMC
sampling depends on what kind of inference is of interest. An unconstrained model may be
estimated by unconstrained Gibbs sampling running through step (i)-(iv) without any constraint
on the state specific parameters. Unconstrained Gibbs sampling, however, does not explore
the whole unrestricted parameter space, but tends to stick at the current labeling subspace
with occasionally switching to other labeling subspaces, while others will never be visited.
An alternative method of estimating an unconstrained model is random permutation sampling
(Frithwirth-Schnatter, 1998). This method is simply an unconstrained Gibbs sampler concluded
by a randomly selected permutation p(1),...,p(K) of the current labeling 1,...,K. After
sampling ¢ by an unconstrained Gibbs sampler, state dependent parameters are permuted in
the following way:

(1) (61,..,6k) = (851 -- 00 k))s
(Mi1y > Mik) = (o) p(1)s -+ > Moi)p(K)), 1= 1, K,
(Il, .. .,IN) = (p(Il), .. .,p(IN)),

whereas the state independent parameters §€ and zV remain unchanged. The permuted pa-
rameters are the starting point for the next Gibbs step. This sampler is an appropriate method
for exploring the whole space of the unconstrained posterior. It delivers a sample from the
unconstrained posterior where balanced label switching occurs as all labeling subspaces are
visited with the same probability.

To estimate a constrained model an identifiability constraint may be introduced into the sam-
pling scheme. One way of forcing the identifiability constraint is to introduce some truncation
or rejection method into step (iii) in order to obtain simulations which fulfill the constraint.
This constrained Gibbs sampling is the standard method applied so far (see e.g. Engle and
Kim, 1999). As mentioned before, identifiability constraints do not necessarily induce a unique
labeling, and therefore, constrained sampling may introduce a bias towards a poor constraint.
The poorness of the constraint may go undetected, if we use constrained Gibbs sampling and
the sampler sticks at the current labeling subspace.

An alternative method for constrained sampling is permutation sampling under an identifiabil-
ity constraint (Frilhwirth-Schnatter, 1998). Unconstrained Gibbs sampling is concluded by a
permutation as in (1), but this time the permutation is selected in such a way that the iden-
tifiability constraint is fulfilled. This method delivers a sample from the constrained posterior.
If the constraint is poor in the sense that it does not induce a unique labeling, the permu-
tation sampler will indicate this fact and exhibit label switching. In this case more suitable
identifiability constraint may be found by exploring the MCMC output of random permutation
sampling.



3 Issues in Model Selection

3.1 The Bayesian Approach towards Model Selection

In practical time series analysis we may end up with various dynamic linear models M,, ...,
M — with or without switching — as possible explanation of our observations. In Frithwirth-
Schnatter (1995) it has been suggested to compare state space models by their posterior prob-
abilities P(M|y") o« L(y"|Mi)P(M;), where L(y™|M;) is the model likelihood obtained
by integrating the complete data likelihood f(y" |¢) with respect to the prior of all unknown
quantities including the latent processes:

(2) L™ M) = / F& [9)r(¥)v(d9).

This Bayesian approach towards model selection could be applied to the following issues:

o Selecting the number of states. We may compare various switching Gaussian state space
models differing in the number K of states.

o Testing for the presence of Markov swilching heterogeneity. We may compare a non-
switching state space model (K = 1) with various switching state space models.

o Testing for constancy of continous, latent components. We may compare a model where a
certain variance 013 of the transition equation is positive with a model where this variance
is equal to zero.

Most of these test problems are non-regular problems. Testing for the presence of Markov
switching heterogeneity and selecting the number of states, for instance, is not possible within
the classical framework of maximum likelihood. Although a non-switching state space model
could be viewed as that special case of a switching state space model where K = 1, the regularity
conditions for justifying the x2-approximation to the likelihood ratio statistic do not hold, as
the state dependent parameters are unidentified under the hypothesis that there is really one
state.

The Bayesian approach compares all possible models under consideration through their model
likelihoods L(y"V|M;). The computation of the model likelihood which by definition is the
normalizing constant of the non-normalized posterior f(y~ [¢)7(+), however, has proven to
be extremely challenging especially for models with various sets of latent processes such as
the switching Gaussian state space model. Analytical integration of (2) with respect to the
whole parameter ¥ is not possible and we have to apply some approximation method. Model
likelihoods have been estimated from the MCMC output using methods such as the candi-
date’s formula (Chib, 1995), importance sampling based on mixture approximations (Frithwirth-
Schnatter, 1995), combining MCMC simulations and asymptotic approximations (Gelfand and
Dey, 1994; DiCiccio et al., 1997) and bridge sampling (Meng and Wong, 1996).

Computing the model likelihood from the MCMC output of a switching model without a latent
continuous state process ="V has been discussed in detail in Friihwirth-Schnatter (1999) with
the following main results. First, estimation of the model likelihood turns out to be sensitive
to the problem of label switching. Especially the candidate’s formula (Chib, 1995) should not
be applied, if label switching is present, and is therefore suitable only for models with unique
labeling. Second, the best result with the lowest standard error is obtained by using the method
of bridge sampling (Meng and Wong, 1996). In the present paper we extend this method to
Gaussian state space models with switching. We will give details in the next subsection.

3.2 Computing the Model Likelihood from the MCMC Output

For a model includirig both discrete as well as continous latent variables IV and z'V, respectively,
there are basically two ways of reducing the dimension of integration in (2). If conditionally on
IV and ¢ the state space model is a linear Gaussian state space model, then it is possible to
integrate out the continous latent process z¥ by running Kalman filtering conditional on IV



and ¢. The second method — which does not rely on Gaussianity nor linearity of the state space
model - is to integrate out the switching process IV:

(3) L) = / L™=, g)m(z" o)n(8) d(=", 8),

where closed formulae for the marginal likelihood L(y" =V ¢) and the marginal prior m(zV|¢)
are available.

Subsequently, we will discuss evaluation of the second integral (3) from the MCMC output

using the bridge sampling technique (Meng and Wong, 1996). Bridge sampling is a method for
computing ratios of normalising constant from MCMC simulations of the posterior. DiCiccio

et al. (1997) suggested to apply bridge sampling to the problem of computing the model like-

lihood. It is obvious from (3) that the model likelihood is equal to the normalising constant of

the posterior density m(zV, ¢|yV) x 7*(zV, dly™) = L(yV |2V, )7 (2N |$)7(¢). Let ¢(zV, 4) be

a density with known normalising constant, which is some simple approximation to the posterior

m(zV, ¢ly"). Let a(z, 4) be an arbitrary function such that [, )r(zN, oly™)g(zN, ¢)d(zV, ¢) >
0. Bridge sampling is based on the following result:

J oz, )n(zV, dly™)e(z", )d(z", ¢) _ fa (@, ¢)m* (=Y, gly™)g(=", 9)d(z", ¢)
Ja(eN, d)a(zN, )m(zV, 8lyN)d(zN,¢) ~ L(yN) [ (2N, $)q(zN, $)m(zV, ¢lyV)d(zV, 4)’

which yields the key identity:

1=

Eq(a(zV, ¢)r* (=N, 4lyY))
4 L - q ) L] ,
“ V) = el a. 6)
where E; is the expectation with respect to a density f(-). I — dependent or independent ~
samples (zV,4)™ m=1,... M and (2V,4)®, 1 =1,..., L from the posterior m(z", ¢|y™)
and the approximate density q( ,¢) respectively, are ava.llable then both expectations are
substituted by the appropriate averages and we obtain the bridge sampling estimator Lps (yV):

iy = Ba ISR e, 90) (3, 9O
© B ) =, = U (e, )", ™)

Note that there are two functions for tuning: the bridge function a{z”", ¢} and the importance
density g(z%, ¢).

If one uses a(z?,¢) = 1/¢(z", ¢), for instance, then we obtain
g ( lN
1 =5 (St

and the following importance sampling estimator of the model likelihood of a switching state
space model:

L (&N, )®
Z )0

(6) Lis(N (:cN ¢ Y0)

l=1

with (5”,&)(1),..., (:EN,qZ)(L) being an i.i.d. sample from ¢(z",¢). This estimator is an
extension of the importance sampling estimator of Friihwirth-Schnatter (1995) to Gaussian
state space models with switching.

If one uses a(z",¢) = 1/7*(z",4|y"), the basic identity for reciprocal importance sampling
(Gelfand and Dey, 1994) results:

)= (o (i)}

leading to the following reciprocal importance sampling estimator of the model likelihood of a
switching state space model: :

-1
R (m)
(7 Lri(y™) = { . Z ﬂ,*( xN d,)(m)l;N)}

m=1




Meng and Wong (1996) discuss an asymptotically optimal choice of a(zN ,¢), which mini-

mizes the expected relative error of the estimator L Bs( yN ) for iid draws from = (z ,¢|yN and
g(z", ¢):

N 1
(8) a(z",4) x

L-g(zN,4)+ M -n(zV, ¢lyN)

We will refer to the corresponding bridge sampling estimator as the ,,optimal” bridge sampling
estimator. As the optimal choice depends on the normalized posterior, we apply the following

iterative procedure: ba.sed on a previous estimate L le)(yN of the normalizing constant, the

posterior is normalized, #(z%, ¢|yV) = (= ,¢|yN)/L(t D(yN), and a new estimate Lg?g (¥™)
is computed by (5). This leads to the following recursion:

'y (&, 9)OlY)
L7y
z ) w((Z
O Y = i) — s A& A0 A

a((=",4)™)
M7 Y T 8 5 MR ()

m=1

Either the importance sampling estimator or the reciprocal importance sampling estimator may
serve as starting value Lg)_)g(yN ).

In Frihwirth-Schnatter (1999), the ,,optimal” bridge sampling estimator outperformed both
importance sampling as well as reciprocal importance sampling for the following reason: whereas
importance sampling as well as reciprocal importance sampling are known to be sensitive to
the tail behaviour of the importance density g(-), it has been shown in Frithwirth-Schnatter
(1999) that the ,,optimal” bridge sampling estimator is much more robust in this concern. This
is of special importance for switching state space models, where an importance density in the
space of the unobserved, latent process £V has to be constructed. The choice of an importance
density which has only fat or only thin tails in all directions of the parameter space appears
unattainable and robustness to the tail behaviour will be of great importance.

Now we turn to the choice of g(z™, ¢) for switching state space models. For much simpler mod-
els than a switching Gaussian state space model, DiCiccio et al (1997) suggested to construct
a normal importance density from the MCMC output, e.g. by fitting a quadratic function to
the log of non-normalised marginal posterior. As already pointed out by DiCiccio et al. (1997)
this choice will work only for well-behaved, regular problems, where the posterior is close to
a normal density. One has, however, to be careful with normal approximations to the uncon-
strained posterior density m(z™, #|y"V) for switching state space models. For an unconstrained
model the posterior usually is multimodal with more or less well-separated modes and a sin-
gle normal importance density might be an extremely bad choice. Therefore we construct the

importance density in an unsupervised manner from MCMC simulations (1), ..., %(M%) from
the unconstrained posterior m(¥|y") in a similar way as in Friihwirth-Schnatter (1995, 1999):
(10) g(z",¢) =
My
1
— > " w(nl(IV)P)m(zN 0™, (IN) ™), gV ) Ko (B1(IV , 2V, 8)), )
ML n=1

where K (]I, 2", 8", y") is the density of the transition kernel appearing in the unconstrained
Gibb sampler. In what follows we assume that the normalising constant of this density is
available. The mixture importance density (10) automatically deals with the problem of mul-
timodality. The mixture approximation is based on averaging over the conditional densities,
where the argument (2", ¢) is fixed and the conditioning indicator process IV is sampled from
the unconstrained posterior switching between the different ways of labeling. Therefore the
mixture importance density (10) will be multimodal, too. In order to reproduce all modes
of the posterior, however, it is essential to base the mixture approximation (10) on a MCMC
method which forces balanced label switching such as the random permutation sampler.



4 Application to Simulated Data

4.1 Data simulated from Model with Switching

First, we apply the methods of the previous sections to data simulated from a local level model
with switching observation variance:

=T +w,  we ~ N(0,Q:),
Y = Tt + vz, ve ~ N(0, Ry),

where Q; is constant (Q; = 0.001), R; is a switching variance:

_fo0, L=t
Be= { 01, IL=2

and I; is a 2-state Markov chain with transition matrix
_ {095 0.05
=1 005 095 /-
We test the ,,true” model against the following alternatives:

e a Jocal level model with jointly Markov switching variances (,,switching model 17):

QU RNy, L =1,
@r)={ G ) 123

® a local level model with two independently Markov switching variances (,,switching model
2”):

o={0Y &=y, o [R]  E=1
QY, =2, T RY, 2=y

an extension of this model, where R; switches between three states:

R I,z =1,
Ry = { RA,  r2=2

Rl 2=3;

¢ and a local level model without switching variances.

In figure 1 we perform explorative Bayesian analysis of the MCMC output obtained from
random permutation sampling of these models. For a model with a single switching variable
all simulations (QU],RUJ)(”, l=1,...,L, are projected onto the (@, R)-plane for all states
j=1,...,K. Similarly, for all models with two switching variables all simulations (QU!, RU')®)
l=1,...,L, are projected onto the (Q, R)-plane for all combinations of states j € {1,..., K1}
of the first and states j' € {1,..., K3} of the second switching variable.

There are a lot of interesting hints in these figures concerning the model selection issues discussed
earlier. For the model with just one switching variable (,,switching model 1) there are two
groups, as expected, and although the model is the wrong one, the simulations show that there
is practically no difference between @ in the first and the second state. This finding would lead
to hypothesize the correct model. If we carry out formal model selection between ,,switching
model 1” and the true model (table 1), we find that the true model is clearly preferred. For the
model with two switching variables (,,switching model 2”) again there are just two groups both
for two and three states in the observation variance R. This is not what would be expected, if
the selected number of states were correct. If we had two states in both variances, we would
expect four groups in this figure and similarly, six groups, if one variance has two and the
other variance has three different states. The fact that there are just two groups is a hint that
the number of states is too large for both models. The MCMC output of both models clearly



indicates, that there are two states in R and just one state in Q. Again we would hypothesize
the true model from analyzing the MCMC output of a model which is wrong. If we test all
wrong models against the true one (table 1), we find that the true model has the biggest model
likelihood. For completeness, we also report the model likelihood for a model without switching
which is much smaller than the model likelihood for any of the switching models.
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(b) True Model (K; =1, Kz = 2)
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Figure 1: Explorative Bayesian analysis for simulated data set 1

Table 1: Formal model selection for simulated data set 1 (standard errors given in parenthesis)

Model log L(y" [Model)
True Model (K; =1, K2 = 2) 57.3052 (0.0819)
Switching Model 1 (K = 2) 49.6716 (0.0665)

Switching Model 2 (K; =2, K2 =2) 45.8414 (0.0845)
Switching Model 2 (K; =2, K, = 3) 33.9585 (0.0928)
No switching -6.2878 (0.0427)

After having selected the model, we need an identifiability constraint, if we are interested in
state specific estimation. From figure 1 it is clear that the constraint R < Rl? separates
the groups. Including this constraint into the constrained permutation sampler leads to an
identified model without label switching.

4.2 Data simulated from a Model without Switching

Next, we simulated data from a local level model without switching:

Ty = 2¢-1 + W, we ~ N(0, Q:)
Yo =Tt + v, vy ~ N(0, R;),

where Q; and R; are constant: @Q; = 0.001, R; = 0.01. We test this model against the following
alternatives:

¢ a local level model with jointly switching variances (,,switching model 1”):

—_ (Q[II)R[I])w It = 1:
(Q:, Re) = { Q4 RA), =2
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e and a local level model with two independently switching variances (,,switching model
27):

Y, =1, RN, =1,
Qt = Q[Z]’ Itl = 2’ Rt = R[zl’ Itz =9

(b) Switching Model 1 (K = 2)

3 »
et

(c) True model (no switching)
Figure 2: Explorative Bayesian analysis for simulated data set 2

In figure 2 we perform explorative Bayesian analysis of the MCMC output obtained from random
permutation sampling of these models, where the simulations are projected in the same way as
in figure 1. The simulation from ,,switching model 2” should show four groups, if both variances
were switching independently, however the only group we see is a clear hint that this model
should be compared with a model without switching which would be the true one. ,,Switching
model 1” shows two groups which are not very well separeted. If we compute model likelihoods
for all models (table 2), we find that the true model, the one without switching, has the highest
model likelihood.

Table 2: Formal model selection for simulated data set 2 (standard errors given in parenthesis)

Model log L(y" |[Model)
True Model (No switching ) 299.0033 (0.0251)
Switching Model 1 (K = 2) 282.9084 (0.0879)

Switching Model 2 (K; =2, K, =2) 280.8277 (0.0817)

5 Application to Modelling Exchange Rate Data

For further illustration we reanalyze the U.S./U.K. real exchange rate from January 1885 to
November 1995, originally published in Grilli and Kaminsky (1991) and reanalyzed by Engle
and Kim (1999). The real exchange rate is defined as the relative price of U.K. to U.S. producer
goods, i.e. U.S./U.K. nominal exchange rate times the U.K. producer price index divided by
the U.S. producer price index. Engle and Kim (1999) suggested to decompose the log of the
real exchange rate y; into a permanent component p; and a transitory component ¢;:

logy: = pe + ct,
where p; follows a random walk process,

Pe=pi-1+way, war~N(0,0%,),
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whereas ¢; is assumed to follow an AR(r)-process:
e =¢16-1+ ...+ rcr + w2, w2~ N(O, ‘7%,:)‘

The variance 67, of the transitory component c; is assumed to switch between K states
01’1 yenes 0}& according to a Markov switching process I} with transition matrix 5!, whereas the
variance U%,: of the permanent component is assumed to switch between K5 states 0? ’I, ees, 03{’5
according to a Markov switching process I? with transition matrix 5%

1,7 2,1
(11) o, = 0ri 03, = 675 -
As the model can be reformulated as a dynamic linear model with state vector z; = (p¢, ¢t, - . -, Ct—r),

it can be viewed as a special case of the switching Gaussian state space model discussed in the
present paper. Various issues in model selection will be discussed within this case study:

e Is the (conditional) variance of the permanent and/or the transitory component really
Markov switching?

o How many states do the switching variances exhibit?

o How should we select the order r of the AR(r)-process?

In their paper Engle and Kim (1999) selected a model where the {conditional) variance of the
transitory component is determined from a 3-state Markov switching process, the (conditional)
variance of permanent component is constant, and the order of the AR-process is equal to
two (i.e. K3 = 3,K; = 1, r = 2). They adopt this specification by exploring the posterior
distributions without formal Bayesian model selection. In the present paper, however, we end
up with a different specification as we start with explorative Bayesian analysis of a more general
model with K; = 4, Ko = 2 and r = 3. The best model will be one where the (conditional)
variance of the transitory component is determined from a four-state Markov switching process,
the (conditional) variance of permanent component is constant, and the order of the AR-process
is equal to two (i.e. K3 =4, K3 =1, r = 2). Our findings will be confirmed by formal Bayesian
model selection.

Also, our estimation scheme differs from the one adopted in Engle and Kim (1999). First,
we do not condition on the first values of the state process, but sample the whole processes
Clery---1€0y---,¢N and po,...,pn including the starting values by applying the multi-move
sampler of Frithwirth-Schnatter (1994), and initializing the filtering step with the prior zg ~
N(io‘o, Polo), where i’o]o = (100 0--- 0)’ and P0|0 = D1ag(1000 0--- 0) Samphng the AR(T)-
parameters is carried out in a similar fashion as in Engle and Kim (1999) from the regression
model ¢; = ¢c;_101 + ...+ Ct—rPp + (O}él )°'5 - €;, where ¢; is iid standard normal. However, as
samples of ¢g,...,c1—, are available from our Gibbs sampler, ¢ is running from 1 to N rather
than from r+2 to N. Within one iteration, sampling @1, . . ., ¢r is repeated until the stationarity
condition on the AR(r)-process is fulfilled.

Second, we start with estimating unidentified models of various orders and try to find the ,,best”
one through formal Bayesian model selection. Estimation is based on random permutation
sampling rather than the method of single move sampling from truncated densities discussed
in Engle and Kim (1999). Within permutation sampling we may sample all variances o,
t=1,...,K;,and 01?’1, j=1,..., Ks, at the same time, as they are conditionally independent,
inverted Gamma distributed for an unconstrained model given (I, 1" zV V). Estimation
is based on the symmetric priors 0,-1’1 ~ 1G(3,8), ¢ = 1,..., K3, and 0;‘-”1 ~ 1G(3,2), j =
1,...,K>. The prior for all conditional transition probabilities 7}, and n?. is chosen to be
D(1,...,1).

We start with explorative Bayesian analysis of a model with K; = 4, K, =2 and r = 3. We
used the random permutation sampler for estimation, where each sampling step is concluded
by a randomly selected permutation. Although this model is not identified, a lot of interesting
information is available from the MCMC output. Part (a) and (b) of figure 3, for instance,
show a scatter plot of (stationary) MCMC simulations (677)(™) versus (7})™ and (0]?’1 )(m)
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