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1 Introduction

Conjoint analysis, introduced as a methodology for marketing research by
Green and Rao (1971), has since gained widespread popularity (Wittink
and Cattin, 1989). The procedure is focused on obtaining the importance
of certain product attributes in motivating a consumer toward purchase
from a holistic appraisal of attribute combinations called profiles. Profiles
are usually evaluated on rating scales. Each consumer evaluates every pro-
file from a prescribed set that is constructed according to a suitable experi-
mental design. To date most applications and commercial conjoint software
(i.e. SPSS, 1997) estimate the unknown parameters by relating attribute
level variation to observed changes in profile evaluation for each consumer,
separately.

OLS estimation at the individual consumer’s level accounts for arbitrary
parameter heterogeneity between consumers. Exploration of parameter and
consumers’ preference heterogeneity, respectively, possibly aiming at mar-
ket segmentation represents the major advantage of conjoint-analysis (i.e.
Hair et al., 1992, p.384). Unfortunately the number of data points avail-
able at the individual consumer’s level is generally very close to the num-
ber of unknown mode] parameters due to limited time and attention of
interviewed consumers. Thus statistically based model comparison at the
individual consumer’s level is nearly impossible as more complex models
do not leave any degrees of freedom. The resulting lack of smoothness of
parameter estimates causes various annoying peculiarities:

First, as Hagerty (1986) demonstrates analytically, simpler models includ-
ing for instance only main effects predict individual consumer’s preferences
significantly better than the true model including interactions. Reanaly-
sis of previously published data confirmed the practical relevance of this
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effect. Second, any estimate of heterogeneity in a given consumer popu-
lation based on the empirical distribution of parameters estimated at the
individual consumer’s level overstates the true amount. Third, individual
level estimates as independent variables in a different model yield biased
coefficients. And finally, individual level estimates as dependent variables
in another different model hinder the statistical detection of variables ex-
plaining parameter heterogeneity (Otter and Strebinger, 1998).

Following the pioneering work of Allenby and Ginter (1995) and Lenk et al.
(1994), we propose in Section 2 a mixed effect model allowing for fixed and
random effects as possible statistical solution to the problems mentioned
above. Parameter estimation using a new, efficient variant of a Markov
Chain Monte Carlo method will be discussed in Section 3 together with
problems of model comparison techniques in the context of random effect
models. Section 4 presents an application of the former to a brand-price
trade-off study from the Austrian mineral water market.

2 The Mixed Effect Model
The data are described by the mixed effect model:

¥i = Zia+ Wib; +¢;, & ~N(0,R;), (1)
bi ~ N(07Qi)’ (2)

where y; is the vector of T responses for each consumer i. Z; is the design
matrix for the fixed effects a and W; is the design matrix for the random
effects b;. A special case of this model is the random coefficient model
¥i = Xifi +€i, €i ~ N(0, R;), B; ~ N(B,Q;), which is a mixed effect model
witha=08,Z;=X;, b =0; =B and W; = X;.

In the present paper we estimate the covariances @; and R; simultane-
ously with the random and the fixed effects from the data by a Bayesian
approach. We assume that for each consumer @); is equal to an abitrary,
but unknown covariance matrix Q, and that R; = oI, where I is equal
to the identity matrix. The amount of heterogeneity is influenced by Q: if
@ tends to infinity, no restrictions are posed on the random effects b; and
we end up with individual estimation for each consumer. If, on the other
hand, @ tends to 0, the random effects are restricted to be the same for
all consumers and we end up with aggregate estimation for all consumer,
where all heterogeneity is lost. By taking @) to be somewhere between these
extremes, we put only some slight restrictions on the individual effects and
preserve much of the heterogeneity among the consumers.
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3 Bayesian Analysis of The Mixed Effect Model
3.1 MCMC Estimation

Bayesian estimation aims at estimating the covariances Q; and R; simul-
taneously with all random and fixed effects 8" = (b1,...,bn) and o from
their joint posterior density m(b1,...,bn,a,8|y") given the data y =
(y1,...,yN). 0 denotes the various unknown parameters appearing in the
definition of Q); and R;. Bayesian estimation of the mixed effect model (1)
is carried out using Markov Chain Monte Carlo (MCMC) methods (see
e.g. Gelfand et al., 1996). Here, we introduce a new multimove Gibbs sam-
pler, which extends the ideas of Frithwirth-Schnatter (1994) to mixed effect
models. Qur method consists of two blocks, the first one is sampling the pa-
rameters 6 of the covariances from the conditional posterior 7(8|a, 5V, y"v)
of 9 given (o, b") and the data and the second one is joint multimove
sampling both of all random effects b and all fixed effects o from the con-
ditional distribution m(b1,...,bx,a|y",8) given all observations and the
covariance parameters 6.

The first step depends on the structure chosen for the covariances Q; and
R; and in many cases turns out to be a standard Bayesian exercise. If
Q: = Q and R; = 0?1, Q and o? are conditionally independent and this
step involves sampling o2 from an inverse gamma posterior, and sampling
Q@ from an inverted Wishart posterior:

02la, bV, yN ~ IG(ve,o + NT/2, Se,0 + 1/2 0L, lyi — Zia — Wibs[3),
Qla, b,y ~ IW(vgo+ N/2,Sq0 + 1/2N, b:b;).

IG(ve 0, Se,0) and IW (vq,0,Sq,0) are the priors for o2 and @, respectively.
To carry out the second step in a multi-move manner is a real challenge,
as we sample from a very high-dimensional density. Note that the joint
posterior of (bY, a) spells as: 7(by,...,bn, aly",0) = w(b1,...,bn|a, ¥, 0)
- m(ajy,8) o« Hf\;lr(b,-ly.-,a,e) n(ajy™,0). First, we sample the fixed
effects o from the marginal posterior 7(aly",6) which is derived from the
marginal heteroskedastic regression model y; = Z;a + €}, e ~ N(0, V;),
Vi = W,'Q.'W,-I + R;. Based on the normal prior N(ég, Ag) the marginal
posterior m(c|y",8) is a normal density N(an, An), where

An = (TiL ZiV7 2+ A5 7,

anv = AN(SN, Z Vi y + A tao).
Conditional on o the random effects b; are independent and are sampled
from the conditional posterior m(b;|y;, o, ). These densities are given by
7(biyi, a, 0) x p(yi|b;, a, 9)m(b;|0) and simplify to w(b;|yi, o, 8) ~ N(b;, B;)
with

bi = Ki(yi — Zia), Ki=QiW,; V", (3)

B; = (I - K;W;)Q;.
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3.2 Model Comparison

Assume that various mixed effect models My, ..., M, are possible candi-
dates for a model of the data. A well-known Bayesian procedure for model
comparison is to compute posterior probabilities P(M;|y") for all mod-
els M; given the data y¥ and the prior probabilities P(M;) by Bayes’
theorem: P(M;|y™) < f(y1,-..,yn|Mi)P(M;). The factor L(y™ |M,) :=
f(n,- .., yn|Mi) is called model likelihood. If all models have the same
prior probability we select the model with the highest model likelihood.
The computation of the model likelihood from the MCMC output is far
from trivial (for a recent review see DiCiccio et al., 1997). Among the pos-
sible methods of computing the model likelihood we apply the candidate’s
formula (Chib, 1995). For a mixed effect model it is based on the following
formula which holds for any 8:

1) = LR, @

where the marginal likelihood L(y™|0) = L(y1, - - ., yn|0) may be computed
by one run of the Kalman-Filter. Thus the model likelihood would be easy
to compute, if the functional value of the marginal posterior 7(8|y”" ) where
known for some . An estimate of the ordinate of the marginal posterior
m(8]y™ ) is obtained from the MCMC output (e, 4¥)D), ..., (a,b")M). For
the covariance model Q; = @ and R; = o2 - I, we use:

M
#Quo2r™) = 2= 3 (e B) ™),y (o2 (e V)™ 4,
m=1

where the conditional densities appearing in the mixture approximation
take exactly the form given in Subsection 3.1.

4 Case Study - The Austrian Mineral Water Market

4.1 Data

The data come from a brand-price trade-off study in the mineral-water
category. Each of 213 Austrian consumers stated their likelihood of pur-
chasing 15 different product-profiles offering five brands of mineral water
(Romerquelle, Voslauer, Juvina, Waldquelle, and one brand not available
in Austria, Kronsteiner) at 3 different prices (2.80, 4.80, and 6.80 [all prices
in ATS)) on 20 point rating scales (higher values indicate greater likelihood
of purchasing). In an attempt to make the full brand by price factorial less
obvious to consumers, the price levels varied in the range of £+ 0.1 ATS
around the respective design levels such that mean prices of brands in the
design were not affected (Elrod et al., 1992).
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j | Effect Unrestricted Model Restricted Model
E(a;ly") | 95%-Interval || E(a;|y™) | 95%-Interval
1 | Const 13.65 12.63 14.54 13.98 13.04 14.84
2 | RO 5.800 4.684 6.826 5.232 4.191 6.148
3| vO 5.298 4.152 6.472 4.454 3.463 5.418
4 | JU 1.000 -0.134 2.160 -0.008 -0.838 0.832
5| WA 1.781 0.725 2.858 1.387 0.457 2.277
6(p -1.901 -2.120 -1.698 -1.934 -2.140 -1.736
7| p? 0.022 -0.092 0.134 -0.028 -0.114 0.062
8| RO p -0.468 -0.685 -0.235 -0.366 -0.5631-0.171
91VO-p -0.474 -0.693 -0.239 -0.348 -0.550 -0.154
10 | JU p -0.197 -0.416 0.039 0 0
111 WA p -0.376 -0.565 -0.183 -0.299 -0.463 -0.103
12 [ RO -p? -0.237 | -0.373-0.084 -0.160 -0.275 -0.038
13 | VO -p? -0.169 -0.322 -0.015 0 0
14 | JU -p? -0.109 -0.261 0.040 0 0
15 | WA -p? -0.043 -0.188 0.106 0 0

TABLE 1. Bayesian estimation of « for the unrestricted and the best restricted
model (RO, VO, etc are the various brands, p and p*> denote the linear and the
quadratic price effect; RO -p, etc are interaction effects)

4.2 Results

We used a fully paramaterized matrix X; with 15 columns corresponding
to the constant, four brand contrasts, a linear and a quadratic price effect,
four brand by linear price and four brand by quadratic price interaction
effects, respectively. The constant corresponds to the mean purchase like-
lihood of Kronsteiner at the lowest price level. We used dummy-coding for
the remaining brands, subtracted the smallest price from the linear price
column in matrix X;, and computed the quadratic price contrast from the
centered linear contrast. Theory did not suggest excluding any effect for all
consumers.

At the level of an individual consumer the model would be saturated since
only 15 data points are available to estimate 15 parameters leaving zero
degrees of freedom. First a possibly overfitted random effect model without
restrictions, neither on the fixed effects a nor on @ was estimated by the
multimove sampler described in Subsection 3.1. The priors were chosen to
be non-informative. After a burn-in-phase of 2000 simulations we used a
stationary MCMC sample of size M = 3000 for estimation.

Table 1 summarizes the posterior estimates of the fixed effects o and the
respective Bayesian confidence intervals. All parameters except the main
effect of Juvina, the quadratic price effect, the linear price by Juvina inter-
action and the interactions of Juvina and Waldquelle with the quadratic




6 Conjoint-Analysis

price component are significantly different from zero at the 95% level.
The Rémerquelle and Voslauer main effects clearly indicate that these two
brands on average are preferred to Kronsteiner when offered at the lowest
price level. According to expectation the linear price effect is negative. The
negative brand by linear price and brand by quadratic price interactions
for Romerquelle und Véslauer indicate that the advantage of those brands
compared to the baseline Kronsteiner diminishes when prices of all three
brands increase above the lowest price level. For all fixed effects the ineffi-
ciency factors ranged between 0.85 and 1.05 indicating the high efficiency
of the multimove sampler.

Figure 1 plots the marginal density of selected parameters corresponding
to different interactions between brand and price. The densities are close
to densities of normal shape. The direct accessibility of parameter den-
sities presents a major advantage of MCMC estimation. Irregular densi-
ties immediately highlight serious violations of distributional assumptions
that might go undetected otherwise. In the case of smaller irregularities,
Bayesian confidence intervals from the densities ensure that the nominal
significance level holds. Relying on asymptotic distributions and standard
errors from the information matrix as classical alternatives might give mis-
leading results in such cases.

3
N
m(atoly™) wflos|y”
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. .
1
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08 08 —0&1-52 o 0z 208 By a—afs 0 02
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FIGURE 1. Marginal posterior of various interaction effects

Table 2 presents the diagonal elements of @) quantifying the amount of
parameter heterogeneity and the respective Bayesian confidence intervals.
The inefficiency of the estimated variances ranges between 1.55 and 4. All
estimated parameter variances are significantly different from zero. Clearly
heterogenous brand preferences are the major source for parameter het-
erogeneity. The marginal densities of @Q;; (not reproduced here) indicate
regular densities for all variances. Note that these densities will not be reg-
ular if the true variance equals zero. In such cases model comparisons using
likelihood ratio tests or other criteria assuming regular parameter densities,
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for instance the Schwarz Criterion, will give misleading results.

j | Effect Unrestricted Model Restricted Model
E(Q;;ly"Y) | 95%-Interval || E(Q;;|y™) | 95%-Interval
1 | Const 43.98 34.41 53.89 43.69 34.39 53.58
2 | RO 43.89 34.36 54.37 44.82 34.34 55.67
3| VO 54.36 41.49 65.77 58.79 44.97 73.44
41 JU 55.30 42.18 68.12 59.74 46.20 73.88
5| WA 42.78 33.13 52.60 41.98 32.64 52.02
6|p 1.978 1.544 2.455 2.127 1.662 2.672
7| p® 0.233 0.170 0.302 0.203 0.139 0.264
8 (RO p 1.232 0.872 1.599 1.189 0.850 1.513
9{VOp 1.247 0.898 1.632 1.880 1.336 2.444
10 | JU p 1.347 0.939 1.810 1.278 0.837 1.786
11| WA p 0.407 0.319 0.505 0.657 0.437 0.889
12 | RO -p* 0.101 0.076 0.125 0.230 0.152 0.310
13 | VO p? 0.179 0.140 0.222 0.295 0.213 0.377
14 { JU -p? 0.058 0.043 0.074 0.162 0.112 0.213
15 | WA -p? 0.091 0.069 0.114 0.081 0.059 0.108

TABLE 2. Bayesian estimation of @Q for the unrestricted and the best
restricted model

4.3 Simplifying the Model Using Exact Bayes Factors

When simplifying mixed effects models the researcher faces two indepen-
dent decisions with respect to every random effect in the unrestricted
model: 1. Is the mean level of the effect in the population significantly
different from zero or not? 2. Is the effect random or constant in the popu-
lation? All two-by-two combinations of answers to these questions might be
reasonable choices where only the combination of ”mean level not different
from zero” together with the assertion ”constant effect” indicates that a
variable has no influence on the outcome.

We inspected marginal posterior densities from our base model to iden-
tify heuristically sensible starting points for model simplification. From the
marginal posterior of Q);; it seems that all effects are random. Some of the
fixed effects a; exhibit marginal posterior densities which cover the value
0 suggesting that the mean levels are not significantly different from zero
(see Figure 1). For theoretical reasons we were reluctant to eliminate any
of the main effects regarding brand and price. Therefore we chose the mean
levels of the following interactions as possible candidates to be fixed to zero:
Juvina by linear price, Voslauer by quadratic price, Juvina by quadratic
price, and Waldquelle by quadratic price. To test whether a; = 0 for some
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or all of these effects, we applied the Bayesian procedure of model com-
parison discussed in Subsection 3.2. Table 3 compares the log of the model
likelihood computed from the MCMC output by the candidate’s formula.
We selected the model with the highest model likelihood which is the one
excluding all tested effects.

Interactions Effects
ROp VOp JUp WAp ROp> VOp* JUp*? WAp® | logL(y")
+ + + + + + + + -9088.7
+ + - + + + + + -9081.2
+ + + + + + - + -9086.4
+ + + + + + + - -9083.1
+ + - + + + - + -9088.7
+ + - + + + + - -9084.1
+ + + + + + - - -9075.5
+ + - + + + - - -9078.9
+ + - + + - - - -9070.6

TABLE 3. Model Comparison ("4’ denotes inclusion, -’ denotes exclusion)

The right hand sides of Table 1 and Table 2, respectively, summarize the es-
timation results for the remaining elements of a and the diagonal elements
of @ for the restricted model . From a substantive point of view interpreta-
tion does not change very much. However, two differences are noteworthy:
Again Juvina does not seem to be preferred to the Kronsteiner brand on
average when both brands are offered at the same price. This lack of dif-
ferentiation occurs independently of the actual price level. Furthermore
the advantage of Romerquelle over the Kronsteiner brand diminishes de-
cisively faster as price increases than the advantage of Voslauer over the
Kronsteiner brand, since only Rémerqueile ”suffers” from a negative inter-
action with the quadratic price effect. From a different angle the advantage
of Romerquelle over Voslauer vanishes when price for both brands reaches
the highest level.

Exploration of consumer heterogeneity with respect to the effects in the
model is easily accomplished using the mean values over the simulations of
b; obtained from (3). They represent estimates for consumer #’s deviation
from the mean parameter a. One could plot the univariate distributions of
these deviations from the constant effect for each component over all 213
consumers and compare them to the distribution of the respective OLS es-
timates. Furthermore, bivariate and multivariate aspects of consumer het-
erogeneity can be explored. Figure 2, for instance, shows the scatterplots
of the Romerquelle main effect against the Voslauer main effect resulting
from individual OLS estimation, aggregate OLS estimation, and the mixed
effects model, respectively. Clearly, aggregate estimation discards most of
the information in the data. Comparing OLS estimation at the individual
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consumer’s level to the mixed model results, the shrinkage effect becomes
obvious. Individual consumers tend to be attracted by regions with higher
consumer density. Since the Romerquelle and Véslauer main effects are
positively correlated individual consumers’ QLS estimates with the combi-
nation ,high preference for Romerquelle/low preference for Véslauer” and
vice versa tend to be shrunk towards the diagonal.
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FIGURE 2. Scatter plot of the individual main effects of Romerquelle against
Véslauer estimated by individual OLS (top left), aggregated OLS (bottom left),
and the mixed restricted effect model {top right),

5 Discussion and Future Research

We applied a mixed effects model to conjoint data from a brand-price trade-
off study introducing a new multimove Gibbs sampler for efficient estima-
tion. To avoid the possible pitfalls of approximate model selection criteria
we used the candidate’s formula and MCMC simulations to compute ex-
act model likelihoods. What else is gained by applying MCMC estimation
instead of e.g. classical maximum likelihood techniques? Clearly, point es-
timates of model variances could be obtained by maximizing the marginal
likelihood. Subsequently fixed and random effects and their respective stan-
dard errors are obtained from one run of the Kalman filter and the Kalman
smoother, conditional on the model variances derived from maximum likeli-
hood estimation. Therefore the uncertainty associated with estimating the
mode] variances is not reflected in the standard errors of fixed and random
effects yielding unreliable confidence intervals. Furthermore, using MCMC
methods it is straightforward to obtain correct standard errors for nonlin-
ear combinations of any parameters in the model. This feature might prove
to be of great value when estimating choice probabilities from the conjoint
parameters using BTL or similar models.
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