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Abstract

In model-driven development (MDD), domain-specific modeling lan-
guages (DSMLs) act as a communication vehicle for aligning the require-
ments of domain experts with the needs of software engineers. With the
rise of the UML as a de facto standard, UML/MOF-based DSMLs are
now widely used for MDD. This paper documents design decisions col-
lected from 90 UML/MOF-based DSML projects. These recurring design
decisions were gained, on the one hand, by performing a systematic litera-
ture review (SLR) on the development of UML/MOF-based DSMLs. Via
the SLR, we retrieved 80 related DSML projects for review. On the other
hand, we collected decisions from developing ten DSML projects by our-
selves. The design decisions are presented in the form of reusable decision
records, with each decision record corresponding to a decision point in
DSML development processes. Furthermore, we also report on frequently
observed (combinations of) decision options as well as on associations be-
tween options which may occur within a single decision point or between
two decision points. This collection of decision-record documents targets
decision makers in DSML development (e.g., DSML engineers, software
architects, domain experts).

1 Introduction
This report presents a collection reusable design-decision descriptions (decision
records) and auxiliary materials (prototype solutions, rationale tables) gained
from systematically reviewing 90 domain-specific modeling language (DSML)
projects. The variety of these 90 projects allowed us to gain significant insights
into the design of DSMLs (e.g., knowledge about frequently observed decision
options and combinations of options in and across existing DSML designs).

∗This work has partly been funded by the Austrian Research Promotion Agency (FFG) of
the Austrian Federal Ministry for Transport, Innovation and Technology (BMVIT) through
the Competence Centers for Excellent Technologies (COMET K1) initiative and the FIT-IT
program.
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The audience of this document collection are decision makers in DSML devel-
opment processes (e.g., DSML engineers, software architects, domain experts).
We consider this report as a valuable source for the decision-making process
of design-decision makers by providing, e.g., guidance on when to favor or to
discard certain candidate solutions for a DSML design problem. The reviewed
DSMLs are based on the Unified Modeling Language 2 (UML; [110]) and the
corresponding Meta Object Facility (MOF [116]). As a consequence, the docu-
mented design rationale is to some extent specific to the capabilities of the UML
2.x, in general, and the UML 2.x extension techniques, in particular.

This documentation of generic design-rationale documentation has been com-
piled in several steps, in a long-running research project:

1. Initial design reviews of 10 of our own DSML projects [68]; see also Ap-
pendix B.

2. A pilot literature-review study [50].

3. An authoritative, large-scale systematic literature review (SLR) of software-
engineering publications published between 2005 and 2012 [140] yielding
80 DSML projects; see also Appendix C).

In step 1, we reviewed ten (out of the final 90) DSML projects which had
been developed by ourselves and are summarized in Table 1. The first column
of Table 1 states the consecutive DSML project numbering used throughout this
paper, the DSML’s name, and a reference to the corresponding publication(s).
The application domains shown in the third column of Table 1 are encoded
according to the 2012 ACM Computing Classification System (CCS).1

Projects P2–P9 provide support for modeling various security properties of
software-based information systems, such as, role-based access control (RBAC),
process-related duties, or data confidentiality and integrity. The DSMLs result-
ing from P2–P9 are based on a common and generic metamodel defined in P2.
The other two DSMLs support the modeling of interdependent concern behavior
(P1) and the modeling of composition in dynamic programming environments
(P10).

In step 3), we performed a systematic literature review (SLR; see, e.g., [26,
86, 163]) on the development of UML/MOF-based DSMLs (more information
is available at [140]). With the SLR, we were able to retrieve 80 related DSML
projects and to complement and revise our decision catalog. The revisions to the
initial version of the catalog [67, 68] are documented in Appendix A. The SLR
helped us to collect evidence for validating the decision options and associations
we identified (see Table 3).

To map the domain coverage of the 90 projects, we classified every DSML
according to the CCS. Table 15 shows the frequency of categories assigned to the
selected DSML projects (due to its size, the table was moved to Appendix D
at the end of this paper). In total, we used 63 distinct CCS categories and
we assigned 177 category tags, that is a mean of ∼2 category assignments per
DSML project. The frequency distribution shows that the paper corpus covers
a very broad and diverse range of application domains. The most frequently
assigned CCS categories see an important number of DSMLs falling into the

1http://www.acm.org/about/class
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Table 1: Overview of conducted DSML development projects. See also Ap-
pendix B.

DSML Objective Domains

P1
ConcernAc-
tivities
[151]

An approach to model interdependent con-
cern behavior using extended UML activity
models.

Access control, Software
design engineering

P2
BusinessAc-
tivities
[150]

An integrated approach for modeling pro-
cesses and process-related RBAC models
(roles, hierarchies, statically and dynamically
mutual exclusive tasks etc.).

Access control, Business
process modeling, Software
security engineering

P3
UML-PD
[135, 137]

A UML extension for an integrated modeling
of business processes and process-related du-
ties; particularly the modeling of duties and
associated tasks in business process models.

Access control, Business
process modeling, Software
security engineering

P4
UML-DEL
[136, 137]

An approach to provide modeling support for
the delegation of roles, tasks, and duties in
the context of process-related RBAC models.

Access control, Business
process modeling, Software
security engineering

P5
SOF
[70]

A UML extension to model confidentiality
and integrity of object flows in activity mod-
els.

Business process modeling,
Software security engineer-
ing

P6
UML-PD
[134]

UML modeling support for the notion of mu-
tual exclusion and binding constraints for du-
ties in process-related RBAC models.

Access control, Business
process modeling, Software
security engineering

P7
SOFServices
[66, 69]

Incorporation of data integrity and confiden-
tiality into the MDD of process-driven SOAs.

Business process model-
ing, Service-oriented archi-
tectures, Software security
engineering, Web services

P8
UML-CC
[138]

Integration of context constraints with
process-related RBAC models and thereby
supporting context-dependent task execu-
tion.

Access control, Business
process modeling, Software
security engineering

P9
SecurityAu-
dit
[71]

A generic UML extension for the definition of
audit requirements and specification of audit
rules at the modeling-level.

Publish-subscribe / event-
based architectures, Soft-
ware security engineering

P10
MTD
[159]

An approach based on model transformations
between the valid structural and behavioral
runtime states that a system can have.

Object oriented languages,
Software architectures

areas of service-oriented architectures (especially implemented via web services),
software security engineering, as well as business process modeling.

Additionally, we extracted the UML diagram types tailored by the 90 DSMLs
according to Annex A of the UML superstructure [110] (see Table 2). In total,
the DSMLs tailor 156 diagram types, that is a mean of ∼1.8 diagram types per
DSML project. In this calculation, we omit four DSMLs, which target all UML
diagram types or are unspecific about the diagram types. Regarding DSMLs’
primary modeling instruments, ∼65% (101/156) of the tailored diagram types
define structure and ∼35% (55/156) behavior of a software system. In terms
of modeling a system’s structure, class diagrams are adopted by 55 DSMLs,
followed by component and package diagrams (15 and 14 DSMLs). On the
behavioral side, activity (27), state machine (13), and use case diagrams (9) are
the three most frequently used ones.

2The DSML does not tailor a UML diagram type specifically; for example, a stereotype
extension of a UML element applicable in all diagram types, such as, Element (see, e.g., [27, 71])
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Table 2: Frequency of DSML-tailored UML diagram types.

Diagram type Diagram-type kinds Frequency

Class Structure 55
Activity Behavior 27
Component Structure 15
Package Structure 14
StateMachine Behavior 13
UseCase Behavior 9
CompositeStructure Structure 8
Object Structure 6
Sequence Behavior 5
*2 — 4
Deployment Structure 3
InteractionOverview Behavior 1

To structure this document collection, we adopted the notion of a tai-
lorable DSML development procedure from [148]. In particular, this procudural
model includes the following main tasks: 1) core-language-model definition, 2)
concrete-syntax definition, 3) behavior specification, and 4) platform integra-
tion (for details see Section 2.1). If these tasks are performed in sequence, an
instance of this procedure will result in a language-model-driven development
approach (steps 2 and 3 are performed in parallel; see also [160]).

The remainder of the paper is structured as follows. First, we elaborate on
our choices of representing design rationale for DSMLs (Section 2), including
the identified decision points (Section 2.1), a template for decision records (Sec-
tion 2.2), an excerpt from encoded design decisions and options (Section 2.3),
as well as the notational conventions used throughout this document (Sec-
tion 2.4). Next, Section 3 explains seven prototype option-sets and sketches
nine frequently adopted decision options found at corresponding decision points.
Subsequently, the complete catalog of collected decision records for designing
UML/MOF-based DSMLs is presented in Section 4 (Sections 4.1–4.6 correspond
to the identified decision points in Section 2.1). Associations between options
of one decision point and between options of different decision points are dis-
cussed in Section 5. Following the bibliography, revisions to the initial version of
the catalog [67, 68] are explained in Appendix A. The complete list of encoded
design decisions for each of the 90 DSMLs is provided in Appendix B. In addi-
tion, Appendix C enumerates the application domain(s), the tailored diagram
type(s), and the option sets per DSML project in an overview table. At last,
the frequency of application domains is reported in Appendix D.

2 Representing Design Rationale
Design rationale ([29, 45]) on DSML development is the reasoning and justifica-
tion of decisions made when designing, creating, and using the core artifacts of
a DSML (e.g., abstract and concrete syntax, behavior specification, metamodel-
ing infrastructure, MDD toolchain integration). Documenting design rationale

or Constraint (see, e.g., [37]).
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explicitly aims at helping design-decision makers by providing and explaining
past decisions (e.g., in a design-space analysis) and by improving the under-
standing of a DSML design during development and maintenance (e.g., as a
kind of design-process documentation).

2.1 Decision Points
The process of developing a DSML can be divided into 6 different decision points
which can be conducted in different sequences depending on the development
style used and the intention behind developing the DSML [148]. In general,
each decision point corresponds to a decision record in this document (D1–D6
below), with each decision record grouping a number of design-decision options.

In a large-scale empirical investigation [140], most DSMLs were found to
involve decisions related to 3 of the 6 phases: D1, D2, D4 (highlighted using
rectangle boxes below). Besides, depending on the context (e.g., application
domain, usage intention, and development style), some decision points may also
be skipped.

D1 Language-model definition (Section 4.1). After a systematic anal-
ysis and a structuring of the respective language domain, one identifies the
domain abstractions to be represented by a DSML. In this context, one
of the main questions is how one describes these domain abstractions to
arrive at a comprehensive and comprehensible language model which can
be used as a basis for developing the DSML. Corresponding options are
the description via a (formal) textual description, via formal or informal
(graphical) models, or through a combination of these options.

D2 Language-model formalization (Section 4.2). At this decision
point, it is determined how a language model defined informally or defined
independently from the UML (see D1) is turned into a formal UML model.
By formal model, we refer to a realization of the language model using a
well-defined metamodeling language such as the UML/MOF metamodeling
infrastructure. A metamodeling language is itself based on a well-defined
and well-documented language model (i.e., CMOF for the UML metamodel
[116]) and provides at least one well-defined and well-documented concrete
syntax to define an own language model (e.g., the CMOF diagram syntax
to specify a UML metamodel extension). At this decision point, decision
options are the definition of an M1 structural model, a UML profile, a UML
metamodel extension, a UML metamodel modification, or a combination
of these options.

D3 Language-model constraints (Section 4.3). A structural UML model
cannot (or only insufficiently) capture certain categories of constraints on do-
main abstractions, such as invariants for domain abstractions, pre- and post-
conditions, as well as guards. As a result, the language-model formalization
could be incomplete or ambiguous. To prevent this, one can specify special-
purpose language-model constraints, for instance via a constraint-language (such
as the OCL [117]), code/textual annotations, model-to-model/model-to-text
transformations (M2M/M2T), or a combination of these options.

5



D4 Concrete-syntax definition (Section 4.4). The concrete syntax of
a UML/MOF-based DSML serves as its user interface and can be defined
in several ways. One can either use model annotations, reuse or extend a
diagrammatic syntax, mix foreign syntaxes with the UML syntax, extend a
UML/MOF-based frontend syntax, provide an alternative syntax, or apply
a combination of some of these options.

D5 Behavior specification (Section 4.5). The behavior specification of a
DSML defines behaviors specific to one or more DSML language element(s).
It determines how the language elements of the DSML interact to produce be-
havior as intended by the DSML engineer. Behavior can be specified via M1
behavior models, formal or informal textual specifications, constraining model
executions, or a combination thereof.

D6 Platform integration (Section 4.6). In order to produce platform-
specific, executable models (e.g., source code) from DSML models, all DSML
artifacts need to be mapped to a software platform. Corresponding decision
options at this point are the generation of intermediate models, using code
generation templates, employing API-based generators, the direct execution of
models, performing M2M transformations, or applying a combination of these
options.

2.2 A Template for Decision Records
For structuring and presenting the recurring DSML design decisions, we employ
a document template which lays out predefined sections. This template has
been derived from prior work on documenting design rationale in software en-
gineering, in particular architectural design decisions [68]. The decision-record
template provides a space of solutions to a given DSML design problem. Each
decision-record document contains the following sections (see Figure 1):

1. Problem statement: Describes the problem that has been repeatedly ob-
served for several DSML design projects, in a specific decision context (see
below).

2. Decision context: Each decision record captures problem and solution
statements specific to a decision context (e.g., using certain metamodeling
toolkit, the application domain modeled by a DSML, or a certain decision-
making phase [148]).

3. Decision options: For each decision problem, several candidate solutions
are listed (e.g., formalizing the language model using a UML profile or a
MOF metamodel). The options listed by each decision record have been
extracted from the selected DSML projects as primary sources (see Ta-
ble 13) and/or secondary studies on designing MOF/UML-based DSMLs.

4. Decision drivers: Describe forces which steer the DSML engineer towards
a particular option (e.g. whether the DSML must extend the UML meta-
model).

5. Decision consequences: The selection of an option (or, a combination of
options) affects the solution spaces of subsequent decisions (e.g. another
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decision context and the follow-up decisions). DSML designers must be
aware of such consequences for an informed decision making in subsequent
decision steps (e.g., to avoid conflicting language-model constraint defini-
tions).

6. Application: This section documents how different design options were
applied in actual DSML projects. The main goal is to document the
successful application of corresponding options and to provide references
for further investigation by the design-decision maker.

7. Sketch: Finally, each decision record gives a concrete example of applying
one of the options. This excerpt, while being limited to one option, is
meant to improve the comprehensibility of the previously described op-
tions which are presented in an abstracted manner.

+application

Record

Problem Option

2..*

1..1

1..1

1..1

describes 

a recurring

documents 

recurring

Driver

1..1

1..*

states 

a recurring

Decision

1..1

1..*
1..1

refers to

as an example

Consequence leads to
1..*

has

1..*

0..*

0..*can cause a

subsequent

Context

1..1

1..1

1..*0..*

0..*

can set 

a new
0..*

0..*
for

0..*

0..*

Figure 1: Conceptual overview of key concepts: decision records, decision con-
text, decision problem, decision options, decision drivers, and decision conse-
quences.

2.3 Excerpt from Encoded Design Decisions and Options
Table 3 shows an overview of the identified DSML design decisions and their
corresponding options. Projects P1–P10 were performed by us (see also Table 1)
while the remaining projects were collected via the SLR. Table 3 shows only an
excerpt from the DSML development projects found during the SLR for the
purpose of demonstrating different combinations of options (as referenced in
the decision records presented in Section 4). Because of its size the complete
table was moved to Appendix B at the end of this paper.
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2.4 Notation conventions
In this report, as well as in related papers [140], we use the following conventions
to refer to decision points, corresponding options, associations between options,
and DSML projects in a consistent way:

• Dx, where x is a number between one and six, refers to one of the Decision
points described in Section 2.1. For instance, decision point D2 refers to
the language-model formalization point.

• Ox.y, where x is a number between one and six and y is a number between
one and seven, refers to a corresponding Option y at decision point x. The
allowed value of y depends on the number of design options for a specific
decision point (e.g., we identified five options for D3 and seven options
for D4; see Table 3 for an overview). For instance, O5.3 refers to the
third option (informal textual specification) at decision point D5 (behavior
specification).

• In some cases we use an abbreviated notation x.y instead of Ox.y. The two
notations are fully exchangeable and have identical meaning. The trun-
cated form is only used when it is referred to multiple options under limited
space (e.g., for the definition of option sets; for examples see Table 4). For
instance, 6.5 (b=O6.5 ) refers to the fifth option (M2M transformation) at
decision point D6 (platform integration).

• Ax, where x is a number between one and 21, refers to a dedicated
Association between two or more decision options of either one decision
point or two or more decision points. The associations between options
are numbered consecutively throughout this paper. For instance, A16
refers to the association between options O3.3↔O6.6 named mandatory
platform integration (see Section 5.2).

• Px, where x is a number between one and 90, refers to a dedicated DSML
Project. The DSML projects are numbered consecutively, the first ten
being our own developments (P1–P10). The remaining DSMLs were re-
trieved via the SLR (P11–P90). For instance, P48 refers to the DSML
named SystemC published in [125] (see Table 14).

3 Frequently Adopted Decision Options
We describe the design-decision making for a given UML/MOF-based DSML
as a set of decisions or, more precisely, as a set of decision options (option
sets, hereafter). Each decision is about evaluating and finally adopting one or
several decision options, with the available decision options being listed by a
corresponding decision record. This way, a decision links to and conforms with
a decision record, such as the ones contained by our catalog (see also Figure 1).
By collecting the decision options which apply to a given DSML as an option
set, we characterize the DSML in the scope of the cataloged decision records
(see Section 4).
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At the time of conducting the SLR, this catalog offered 27 decision options to
describe a DSML.3 Six subsets of these decision options are associated with the
six decision points (see Section 2.1). For example, four options are specific to
defining a language model (D1; see Table 3). In this paper, we used this design-
decision space to code the selected DSMLs according to this option scheme,
thereby, yielding one characteristic decision-option set per DSML.4

In order to characterize the observable design-decision space for UML/MOF-
based DSMLs, we mined for frequent and characteristic option sets using an
analysis that is based on frequent item-sets [22, 60]. Frequent option sets are
recurring combinations of decision options (or of other, smaller option subsets).
Thus, we were interested in option sets adhering to certain constraints (i.e.
minimum support, closedness, freeness, maximality; [22, 60]). Support denotes
the occurrence frequency of a given option (sub-)set in a collection of observed
option sets as any possible subset. We define an option (sub-)set as relatively
highly supported when found three or more times in the DSML projects gath-
ered via the SLR.5 Otherwise, an option (sub-)set is defined as relatively lowly
supported. Options not found in any of the selected DSML projects are defined
as candidate options ([140] provides detailed background on those concepts in
the context of our study).

Option (sub-)sets can express fragments of a DSML design as well as com-
plete DSML designs (also called prototype option-sets). Option (sub-)sets can
differ in terms of the number of options contained by them (size), in terms of
their relatively higher or lower levels of support, and whether they are con-
tained as-is in the base of observed option sets or not (i.e., whether they totally
describe at least one DSML design alone, rather than a fragment of it).

The 80 DSMLs obtained via the SLR contain seven distinct prototype de-
signs, that is, option sets which are frequent and describe entire DSML designs,
with and without extensions. Six prototype option-sets come with frequent ex-
tensions (see Table 4). One prototype option-sets with frequent extensions is an
option set which represents a highest-common, largest option subset (i.e., a de-
sign fragment of maximal size, which is frequently observed and has a relatively
high support) which was also frequently found as complete DSML design. Be-
cause for this option set frequently occurring supersets exist, this (evolutionary)
prototype option-sets is often extended by adding other (frequently observed)
options [140].

For example, the option set of P26 (UML-PMS [56]) describes five observed
and complete DSML designs (frequency) while it is found as a large subset in
25 other DSMLs (support − frequency) in an extended form. Five prototype
option-sets involve UML profiles only (O2.2), just one frequently found proto-
type option-set builds solely on metamodel extensions (O2.3; e.g., P13 [14]).
All six designs involve at least one concrete-syntax decision option (see also
Figure 2, indicating D4 as mandatory). The only platform-integration option
found adopted in three prototype option-sets (and twelve more extensions of it)
are M2T generator templates (O6.2).

A seventh prototype option-set was found which comes with infrequent exten-
3Note that there are actually 31 decision codes (see, e.g., Table 3). Four of those

codes/numbers serve for coding pseudo-decision options; e.g., not taking any decision.
4The complete list of each option set per DSML is shown in Table 14 in Appendix C.
5This way, we adopt a commonly followed rule of thumb in the software-pattern community

(see, e.g., [36, 30]).
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Table 4: Overview of the six prototype option-sets which are frequently extended
(ordered by decreasing absolute support).

Prototype Support (abs.) Frequency (abs.) DSMLs (excerpt)

{1.1,2.2,3.4,4.1,4.6} 30 5

P26 (UML-PMS [56]),
P44 (PredefinedCon-
straints [37]), P68
(UML-AOF [83])

{1.1,2.2,3.1,4.1,4.6} 26 4
P18 (UML4PF [62, 63]),
P62 (CUP [15]), P63
(REMP [77])

{1.1,1.4,2.2,4.1,4.6} 22 5
P25 (RichService [47]),
P54 (SPArch [6]), P55
(MoDePeMART [23])

{1.1,2.2,4.1,4.6,6.2} 15 3
P51 (WCAAUML [72]),
P64 (DPL [10]), P85
(WS-CM [85])

{1.1,2.2,3.1,3.4,4.1,4.6} 13 3
P22 (C2style [121]), P59
(SHP [105]), P70 (Archi-
tecturalPrimitives [161])

{1.1,2.3,4.6} 10 4
P13 (UML4SPM [14]),
P14 (MDATC [13]), P49
(UML2Ext [24])

sions. A prototype option-set with infrequent extensions is an option set which
represents a lowest-common, largest option subset (i.e., a design fragment of
maximal size, which is frequently observed and has a relatively low support)
which was also frequently found as complete DSML design. Because for this op-
tion set no frequent supersets exist, this prototype option-set is often employed
as is. Extensions that add options to this (evolutionary) prototype are rarely
observed [140]. The identified prototype option-set with infrequent extensions
is realized by three DSMLs (P34, P37, and P52; see Table 5) and it is found
extended twice (support − frequency). The option subset reflects a widely
documented and recommended—but not necessarily frequently used—way of
creating a DSML using UML profiles, by two-option strategies to define the
language model (O1.1, O1.4) and the language-model constraints (O3.1, O3.4),
respectively. The concrete-syntax choices O4.1 and O4.6 are often implied by
adopting UML profiles.

Table 5: Overview of one prototype option-set which is infrequently extended.

Prototype Support (abs.) Frequency (abs.) DSMLs (excerpt)

{1.1,1.4,2.2,3.1,3.4,4.1,4.6} 5 3
P34 (UACL [132]), P37
(SafeUML [165]), P52
(IEC61508 [118, 119])

The seven prototype option-sets which are realized as-is and with extensions
for 63 out of the 80 DSMLs obtained via the SLR (∼79%) and for 68 out of the
total 90 DSMLs (∼76%) are summarized in terms of their commonalities and
differences as a feature diagram in Figure 2.

The seven designs are combinations of nine options (see Table 6). By looking
at these nine options and their characteristic combinations (see Tables 4 and 5),
27 out of both, the 80 DSMLs retrieved via the SLR (∼34%), and the total 90
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DSMLs (30%) can be described in their entirety (prototype option-set).

...

Prototype option-set

O1.1 O1.4 O2.2 O2.3 O3.1 O3.4 O4.1 O4.6 O6.2

O2.2 O4.1 O4.6
O2.3 O4.6 O4.1

O2.2O6.2
O2.2O1.4

Figure 2: A feature model which represents the prototype option-sets found in
the pool of 80 DSMLs; that is, each configuration of the feature space represents
one of the seven observed prototype option-sets listed in Tables 4 and 5.

The seven prototype option-sets are composed of nine decision options. Ta-
ble 6 provides thumbnail descriptions of these frequently adopted decision op-
tions. The complete decision record for each decision point is documented in
the following Section 4.

4 Decision Records
This section presents the complete list of decision records, structured according
to our template defined in Section 2.2, for each decision point as introduced in
Section 2.1.

4.1 D1 Language-Model Definition
Problem statement. How should the domain (or domain fragment) be de-
scribed?
Decision context. A prerequisite for DSML design is a systematic analysis
and the structuring of the language domain. By applying a domain analy-
sis method, such as domain-driven design [48], information about the selected
domain is collected and evaluated (e.g. based on literature reviews, scenario an-
alyzes, and collected expert knowledge). If the domain is already captured by
an existing software system, artifacts related to the software system (e.g. code
base, documentation, test suites) provide valuable input for the domain anal-
ysis. Based on this material, a structured domain description (referred to as
a generic language model [148], hereafter) is defined. The domain description
provides a domain definition, the domain vocabulary, and a catalog of domain
abstractions and abstraction relations. The domain abstractions can be de-
scribed using narrative text and/or using textual or diagrammatic specification
formalism. These concept descriptions (models) form the basis for subsequent
steps of formalizing a core language model (i.e, the abstract syntax of a DSML;
see Section 4.2).
Decision options.

O1.1 Textual description:6 Textual artifacts describe domain abstractions in

6Frequently adopted options are underlined in the decision-record descriptions (for more
information see Section 3).
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Table 6: Thumbnail descriptions of nine frequently adopted decision options.

Problem statement Options Drivers

How should the domain
(or domain fragment) be
described?

O1.1 Textual description
O1.4 Formal diagrammatic
model

Availability of existing dia-
grammatic domain descrip-
tions, intended target au-
dience, correspondence mis-
matches with UML seman-
tics, consistency preservation
effort, cognitive effectiveness
of a representational format

In which MOF/UML-
compliant way should
the domain abstractions
be formalized?

O2.2 Profile (re-)definition
O2.3 Metamodel extension

Overlap of DSML and UML
domain spaces, degree of
DSML expressiveness, porta-
bility and evolution require-
ments, compatibility with ex-
isting artifacts

Do we have to define con-
straints over the core lan-
guage model(s)? If so,
how should these con-
straints be expressed?

O3.1 Constraint-language
expression
O3.4 Textual annotation

Constraint formalization re-
quirements, language-model
checking time, integrated
language-model constraint
requirements, maintainabil-
ity effort, portability require-
ments, language model and
constraints conformance

In which representation
should the domain mod-
eler create models using
the DSML?

O4.1 Model annotation
O4.6 Diagram symbol reuse

Non-diagrammatic UML no-
tation requirements, degree
of cognitive expressiveness,
domain-specific applica-
tion requirements, degree
of required modeling-tool
support

How should the DSML
artifacts be mapped to
(and/or integrated with)
a software platform?

O6.2 Generation template

Targeting multiple plat-
forms, maintainability effort
of static code fragments,
non-executable models

an informal way (e.g. narrative prose text).
O1.2 Formal textual model: Definition of domain abstractions via textual

formalisms. For example, mathematical expressions (e.g. universal algebra [80])
or formal grammars (e.g. the Extended Backus-Naur Form [74]) provide means
for well-formed and unambiguous definitions of domain concepts and relations.

O1.3 Informal diagrammatic model: Domain abstractions are sketched in
ad hoc diagrams, with the diagrammatic representation not being compliant
to a standardized software modeling language and corresponding diagrammatic
production rules. Examples are forms of visual concept modeling (e.g. early
feature diagrams) or pseudo UML diagrams (e.g. class diagram notations being
used as re-composable drawing shapes).

O1.4 Formal diagrammatic model: The domain abstractions are expressed
by means of a (formally) specified/standardized modeling language (e.g. MOF,
UML, ER, STATEMATE) which adopts a graphical representation (e.g. UML
class models, UML activity models, and/or STATEMATE statecharts).

Combination of options: For instance, to facilitate communicating con-
cepts, diagrammatic models (O1.3, O1.4) can be used in support of a predom-
inantly informal textual description (O1.1; see also related association A1 in
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Section 5.1). For explanatory purposes, normative and formal textual defini-
tions (O1.2) are commonly supported by non-normative and informal textual
descriptions (O1.1).
Decision drivers.

Availability of existing diagrammatic domain descriptions: If either formal or
informal diagrammatic descriptions are available (e.g. a UML M1 class model),
a domain description could be devised as a refinement (see also A6 in Sec-
tion 5.2). For instance, by perfective refinement (e.g. turning an informal into
a formally correct diagram; O1.4) and/or by refining the domain description
as such (e.g. adding additional classes and associations to integrate previously
uncovered domain abstractions).

Intended target audience: The language-model definition is used as a mutual
communication vehicle for both, the domain experts and the DSML engineers.
Depending on the domain, different views and notations must be considered. If,
for example, the domain experts are mathematicians, a mathematical expression
(O1.2) is suitable (see, e.g., [80]). In case of a DSML for software engineers (e.g. a
DSML for defining software tests) the UML can be used to define the language
model (O1.4). For non-technical business experts, prior experiences (see, e.g.,
[96, 130]) suggest that a process-oriented view (e.g. task and data flows) and
process-oriented notations (e.g. UML activity models or BPMN models) are
more adequate (O1.3, O1.4).

Correspondence mismatches with UML semantics: If the domain is described
in a generic manner by adopting a formal notation (O1.2, O1.4), it needs to be
transformed into a formal UML-compliant operationalization model (see D2 in
Section 4.2 and also related association A6). Different transformation needs
may result from various mismatches:

1. A mismatch between modeling languages: For example, when using ER
modeling for describing domain abstractions, a transformation from ER
elements into a UML class model or a MOF-compliant UML metamodel
(extension) is needed. This bears the risk of impedance mismatches due to
diverging definitional foundations (e.g. UML-elements have unique iden-
tifiers independent of attribute values; ER models use a minimal set of
uniquely identifiable attributes for entity identification).

2. A mismatch between modeling views: There might also be a discrepancy
between the views stressed by different model representations (e.g. ER di-
agrams cannot model behavior, for instance there are no UML operation
or message type equivalents in ER diagrams). A domain description might
stress a behavioral angle (e.g. using statecharts) while an operationalized
language model (e.g. due to the specificity of the modeling language) re-
quires additional structure details (e.g. properties of domain abstractions).

3. A mismatch between different modeling levels: Finally, even from the
same view and within the same language framework, different levels of
model granularity (e.g. for the MOF/UML context: meta-metamodel,
metamodel, model, instance/repository model [116, 110]) can be adopted.
Having defined, for example, the domain description at the UML M1 level
raises the issue of creating a mapping up to a metamodel (M2) for opera-
tionalizing the language model.
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4. Multiple mismatches: Mismatches can occur in any combination of the
previous three mismatch categories.

Consistency preservation effort: The effort required to preserve the consis-
tency between different domain description artifacts (e.g. diagrams and textual
descriptions) is a critical factor when considering combined options. The neg-
ative effects of introducing inconsistency, for instance between a diagram and
its textual description, can be mitigated by declaring either representation the
normative one.

Cognitive effectiveness of a representational format: A decision between any
formal textual (O1.2) or any formal diagrammatic notation (O1.4) must con-
sider the cognitive load caused by either representation choice. Irrespective of
the target domain, diagrammatic representations benefits from their capacity
to spatially group information bits otherwise spread in their textual form. Also,
supporting visual perception and visual reasoning facilitate processing and com-
municating domain abstractions (see [73] for an overview). At the same time,
there is a major tension between cognitive effectiveness of diagrams and the
complexity of the perception task. This complexity is determined by the level
of diagrammatic detail (e.g. in a formal notation) and the multiplicity of dia-
grams and views covered. For extensive domain descriptions or a high level of
detail (views), textual representations (in support of visualizations) are consid-
ered more appropriate. This has been reported for inadequately designed visual
variability models [35]. However, given the intentionally limited expressiveness
of DSMLs (in terms of concepts covered), diagrammatic representations at the
level of a generic domain description are suitable; especially if supported by
(formal) textual descriptions to cover certain details. Besides, perceptional bi-
ases of the domain audience affect the cognitive effectiveness of the adopted
representation type (see also above).

An overview of positive and negative links between decision drivers and
available options is shown in Table 7. The following coding schema is used
in the table. (+)+: (very) positive influence; o: no influence; (−)−: (very)
negative influence. An option having either a (very) positive or a (very) negative
influence—depending on the intended DSML’s application domain, professional
background as well as prior knowledge and experience of users etc. (see above)—
is denoted by (+)+/(−)−.

Table 7: Positive/negative links between drivers and options.

Driver/Option O1.1 O1.2 O1.3 O1.4

Availability of existing diagrammatic domain
descriptions + + ++ ++

Intended target audience o ++/�� ++/�� ++/��
Correspondence mismatches with UML seman-
tics o � o �

Consistency preservation effort � � � �
Cognitive effectiveness of a representational for-
mat o +/� o +/�

Decision consequences. The initial phase of the generic language-model defi-
nition has to cover all domain-specific concepts from the selected target domain
and precedes the formalization via the MOF/UML.
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Output artifacts: These are the core language-model concepts, whereas the
description form depends on the application domain and involved domain ex-
perts. The generic language model description can be informal (O1.1, O1.3), in
a structured form (O1.2, O1.4), or defined via combinations of these options.

Mapping to metamodeling infrastructure: If the definition is not based on
the MOF (e.g. an option in O1.2 or O1.4), the concepts have to be mapped
to MOF-equivalent elements (correspondence mismatches can occur; see the
drivers section above).
Application. As all our DSMLs were created from scratch (see Table 1),
there were no existing domain descriptions available (e.g. in terms of code or
documentation artifacts). This context affected our decisions as the option
space was not constrained per se: In a combined form, we adopted formal
textual (O1.2) and UML/MOF-based diagrammatic definitions (O1.4) in P2–
P4, P7, and P8. All generic language-model definitions (e.g. P1–P10 and P17,
P30, P39, P53, P58, P60, P61 in Table 3) are defined via or accompanied by
informal textual descriptions (O1.1). Additionally, P60 serves as an example
for the application of informal diagrammatic models (O1.3).
Sketch. An excerpt from a formal and textual domain description (O1.2) in
combination with surrounding textual explanations (O1.1) is shown beneath.
The example is taken from P7 which requires a definitional basis to express
data flow semantics (i.e., object flows, later to be mapped to object flows in
UML activities). In this context, a selector expression for collecting succeeding
object nodes is needed. That is, the set of object nodes for which a direct
path exists between a source and a target object node must be selectable. The
selector definition expresses certain conditions, for instance, the object flow path
must only include arcs or control nodes, whereas tasks or intermediary object
nodes are to be excluded. The domain description adopts a set-theoretical
model (O1.2) to express the selector operation as a mapping and the selection
conditions as mapping constraints:

The mapping successors : O 7! P(O) is called succeeding object nodes. For successors(os) =

Osucc with os 2 O and Osucc � O we call os source node and each ot 2 Osucc a direct suc-
cessor of os. In particular, Osucc is the set of object nodes for which a path exists between
os and each ot 2 Osucc. Formally: 8os 2 O; ot 2 successors(os) : ofpath(os; ot) 6= ;.

4.2 D2 Language-Model Formalization
Problem statement. In which MOF/UML-compliant way should the domain
abstractions be formalized?
Decision context. After the identification of language-model concepts, the
corresponding definitions serve as input for the phase of formalizing the domain
constructs into a MOF/UML compliant core language model.
Decision options. For UML-based DSMLs, the language model can be for-
malized via dedicated language extension constructs (such as UML profiles) or
by extending the modeling language to provide the required semantics (see,
e.g. [28, 110]).

O2.1 M1 structural model: Structural UML models are an ad-hoc instru-
ment to formalize domain abstractions. In a class model, for instance, domain
abstractions can be expressed as classes and relationships as associations.
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O2.2 UML profile: Profiles are a language extension option to tailor the
UML for different purposes. A profile consists of a set of stereotypes which
define how an existing UML metaclass may be extended.

O2.3 Metamodel extension: A metamodel extension introduces new meta-
classes and/or new associations between metaclasses to the UML metamodel
(MOF-based extension [110, 116]). The structure and semantics of existing
elements of the UML metamodel are preserved.

O2.4 Metamodel modification: In contrast to a metamodel extension, exist-
ing metaclasses of the UML metamodel are modified; for example, by changing
the type of a class property or by deleting existing associations (MOF-based
extension [110, 116]).

Combination of options: A combination may include the definition of a
metamodel extension as well as an equivalent profile definition (see, e.g., P7).
Similarly, stereotype definitions can be provided to accompany a metamodel
extension/modification (see, e.g., P9).
Decision drivers. An overview of positive and negative links between decision
drivers and available options is shown in Table 8.

Overlap of DSML and UML domain spaces: The degree of overlap between
the domain space of the DSML concepts and the general purpose language con-
structs (i.e., the UML specification) has, for instance, a direct impact on whether
a profile definition is sufficient (O2.2) or on whether a metamodel extension/-
modification is needed (O2.3, O2.4).

Degree of DSML expressiveness: A UML profile (O2.2) can only customize
a metamodel in such a way that the profile semantics do not conflict with the
semantics of the referenced metamodel. In particular, UML profiles cannot add
new metaclasses to the UML metaclass hierarchy or modify constraints that ap-
ply to the extended metaclasses (see, e.g., [146]). Therefore, profile constraints
may only define well-formed rules that are more constraining (but consistent
with) those specified by the metamodel [110] (see also A9). In contrast, a meta-
model extension/modification (O2.3, O2.4) is only limited by the constraints
imposed by the MOF metamodel (i.e. the abstract syntax of the UML can be
extended via new metaclasses and associations between metaclasses; see also
A11).

Portability and evolution requirements: A newly created metamodel (O2.3,
O2.4) is an extension of a certain version of the UML specification. Thus, the
domain-specific metamodel extension possibly needs to be adapted to conform
with newly released OMG specifications. Re-usability of a UML extension is
also affected by being either compliant with the UML standard (e.g. O2.2 or
O2.3) or not (e.g. O2.4).

Compatibility with existing artifacts: Pre-existing DSMLs, software systems,
and tool support have a direct impact on the design process of a DSML in
terms of compatibility requirements and integration possibilities (see also A17
and A20). For instance, the UML specification defines a standardized way to
use icons and display options for profiles (O2.2). Tool support for authoring
UML models and profiles (O2.1 and O2.2) is widely available (see, e.g., [146]).
Decision consequences.

Formalization style dependencies: Certain dependencies can result from
combined language-model formalizations (e.g. O2.2 and O2.3; see also A13).
For instance, profiles are dependent on the corresponding metamodel (i.e., the
UML). If a profile is combined with a metamodel modification (O2.4), changes
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Table 8: Positive/negative links between drivers and options.

Driver/Option O2.1 O2.2 O2.3 O2.4

Overlap of DSML and UML domain spaces +/� +/� +/� +/�
Degree of DSML expressiveness �� � + ++
Portability and evolution requirements + + � ��
Compatibility with existing artifacts ++ ++ � �

to the metamodel can affect the respective stereotypes (e.g. if a stereotype-
extended metaclass is modified).

Language-model ambiguities: If no further constraints to the language model
are specified (see Decision D3), the language model must be fully and unam-
biguously defined using the chosen formalization option and implicitly enforced
restrictions (e.g. by using profiles and thus inheriting all semantics from the
UML metamodel; O2.2; see also A7 and A9).
Application. In all our DSML projects, we formalized the language models
as metamodel extensions (O2.3). Additionally, profiles (O2.2) were employed in
P1, P3, P7, P9, and P10. Therefore, we effectively adopted combined strategies.
In related approaches, we also found the application of M1 structural models
(O2.1, e.g. in P58) and the modification of the UML metamodel (O2.4, e.g. in
P61) for the formalization of the language model. As an example for O2.4, P61
documents a UML metamodel modification by adding new attributes to existing
UML classes (e.g. to classes Class and Property). This is in contrast to several
other approaches which employ metamodel extensions (O2.3), but do not ex-
plicitly document whether they perform modifications to the UML metamodel
(O2.4), as well. For instance, in P53, existing classes from the UML metamodel
(e.g. UseCase) are associated with newly defined classes (e.g. UseCaseDescrip-
tion). The metamodel definition in P53 remains uncertain regarding the own-
ership of association ends: (1) Both ends could be owned by the association
(O2.3); (2) one end could be owned by the association, one by a class (O2.3 or
O2.4, depending if the owning class is coming from the UML metamodel); or
(3) both ends could be owned by their corresponding classes (O2.4). To avoid
such ambiguities, association end ownership can be made explicit with the dot-
notation [110]. Furthermore, accompanying textual annotations can provide
clarifying details. In Tables 3 and 13 such underspecified DSML projects are
denoted with an option mark being put in parentheses.
Sketch. Figure 3 depicts an excerpt from a UML extension (taken from P7).
On the left hand side, it shows a UML package definition called SecureObject-
Flows::Services as an example of a metamodel extension (O2.3) and, on the
right hand side, a UML profile specification named SOF::Services (O2.2). Map-
pings between these two language-model representations are provided as M2M
transformations. Both UML customizations provide the same modeling capa-
bilities for using one of our UML security extensions (for details see [70, 66, 69])
with the SoaML specification [113].

4.3 D3 Language-Model Constraints
Problem statement. Do we have to define constraints over the core language
model(s)? If so, how should these constraints be expressed?
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Figure 3: Exemplary UML metamodel extension and profile definition [66].

Decision context. A core language model has been formalized using either a
UML metamodel extension/modification, a UML profile, or a UML class model
(D2). The resulting language model describes the domain-specific language in
terms of its language elements and their interrelations. The definition of these
interrelations is limited through the expressiveness of the MOF and the UML
(e.g. part-of relations). A structural UML model, however, cannot capture cer-
tain categories of constraints over domain abstractions that are relevant for the
description of the target domain. Examples are invariants for domain abstrac-
tions, pre- and post-conditions, as well as guard conditions. As a result, the
language-model formalization could be incomplete or ambiguous (see also A9).

If the language model has been realized by creating multiple formalizations
(e.g. multiple profiles), there is an additional risk of introducing inconsistencies
if the DSML can be used in different configurations (e.g. different profile com-
positions). Consider, for example, profiles which integrate two (independent)
UML extensions.
Decision options.

O3.1 Constraint-language expression: One can make language-model con-
straints explicit using a constraint-expression language, for example, via the
Object Constraint Language (OCL [117]) or the Epsilon Validation Language
(EVL [88]).

(O3.2 Code annotation:)7 The language model and its elements are enriched
through annotations which contain expressions in a programming language (or
a language embedded within the host programming language). For instance,
this can be realized by using model annotations and UML’s OpaqueExpression
[110] (see also A15).

(O3.3 Constraining M2T/M2M transformation:) The constraints over the
language model are expressed at the level of transformation templates. The re-
spective template expressions contain checks (e.g. conditional statements based
on model navigation expressions) which test model instances for the implicit
fit with corresponding domain constraints. As for M2M transformations, for
example, conditional statements in the Epsilon Transformation Language (ETL
[88]) based on Epsilon Object Language (EOL [88]) expressions can be used to

7Candidate options not applied in any of the selected DSML projects are put in parentheses
in the decision-record descriptions.

19



specify structural constraints over the language model (i.e. at the model instance
level) and to enforce them in each transformation run.

O3.4 Textual annotation: Certain constraints (e.g. temporal bindings) elicited
from the target domain cannot be captured sufficiently via evaluable expressions
(i.e. constraint-language expressions or code annotations) and/or the constraints
are intended to serve a documentary purpose (esp. annotations for domain ex-
perts). In such cases, unstructured (prose) text annotations may capture con-
straint descriptions (e.g. via UML comments).

O3.5 None/Not specified: Static constraints over the language model are not
made explicit in (or along with) the language model.

Combination of options: For instance, textual annotations (prose text) can
be used in addition to constraint-language expressions to provide natural-language
constraint descriptions for readers not familiar with a specific constraint lan-
guage (see also A2).
Decision drivers. An overview of positive and negative links between decision
drivers and available options is shown in Table 9.

Constraint formalization requirements: In early iterations (e.g. DSML proto-
typing), constraints might not be expressed via well-formed, syntactically valid
constraint-language expressions, but rather as pseudo-expressions or unstruc-
tured text (O3.4). When the language model is maturing due to subsequent
iterations, these annotations can be changed into evaluable expressions (O3.1–
O3.3).

Language-model checking time: If tool integration for model checking is a
requirement, we have to choose one ore more of the options O3.1–O3.3 (see also
A3 and A15). A driver toward either option is the intended model-checking time.
Relevant points in time follow from the model formalization option adopted
(e.g. class model vs. metamodel-based) and the platform-support (model-level
or instance-level checks). Language-model checking based on transformation
expressions (O3.3) realizes the latest possible checking point. Therefore, this
option does not offer any constraint-based feedback during model development.

Integrated language-model constraint requirements: Constraint-language ex-
pressions (O3.1) are developed with the purpose of integrating the constraints
with the (meta)model representations. Examples are standard-compliant and
vendor-specific OCL expressions for the UML. Models and constraints can also
be integrated, for instance, via programming-language-based expressions over
secondary Ecore representations of UML models (e.g. Eclipse EValidator frame-
work; O3.2) as well as via natural-language UML comments (O3.4). The latter
two options having the drawback that they are specific to a certain platform
(O3.2) and lacking automatic evaluation (O3.4).

Maintainability effort: Explicitly defined model constraints (O3.1–O3.3) cre-
ate structured text artifacts which must be maintained along with the model
artifacts (e.g. a corresponding XMI representation). Toolkits and their model
representations offer different strategies for this purpose, for example embedding
constraints into model elements (i.e. model annotations, such as UML com-
ments), maintaining constraint collections as external resources (e.g. separate
text files), or editor integration. Each strategy affects the artifact complexity
and the effort needed to keep the constraints and the models synchronized.

Portability requirements: If the portability of constraints between differ-
ent MDD toolkits (e.g. Eclipse MDT, Rational Software Architect, MagicDraw,
Dresden OCL) is a mandatory requirement, platform-dependent options O3.2
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and O3.3 most often have to be excluded. However, due to version incompatibil-
ities and vendor-specific constraint-language dialects (e.g. Eclipse MDT OCL),
even O3.1 does not guarantee basic portability for the ambiguously specified sec-
tions of the UML/OCL specifications (esp. for semantic variation points such
as navigating stereotypes in model instances or for transitive quantifiers such as
closure).

Conformance between language model and constraints: Constraints on the
language model can be defined separately from the corresponding metamodel
(e.g. using code annotations; O3.2) or at a later stage (e.g. for M2T transforma-
tions; O3.3). It must be ensured that language-model constraints do not contra-
dict their language-model formalization and vice versa. Moreover, constraints
may need to be adapted when the metamodel changes (e.g. OCL navigation
expressions; O3.1).

Table 9: Positive/negative links between drivers and options.

Driver/Option O3.1 O3.2 O3.3 O3.4 O3.5

Constraint formalization requirements � � � + o
Language-model checking time ++ ++ + �� ��
Integrated language-model constraint require-
ments ++ + o + o

Maintainability effort � � � o o
Portability requirements + �� �� o o
Conformance between language model and con-
straints � � � o o

Decision consequences.
Output artifacts: When we choose to define constraints for a DSML, we

receive a catalog of language-model constraints that offer additional structural
semantics for the DSML. Depending on the actual option(s) adopted, an explicit
catalog of formally defined constraints (e.g. via OCL) is available which can be
used to (automatically) test the validity of UML diagrams modeled with the
corresponding DSML. Moreover, a set of M2M/M2T transformation template
expressions used to validate model instances or code/textual annotations can be
produced as output artifacts. The decision which kind of constraint definition is
the most suitable is highly dependent on the actual stage of the DSML project,
available tool support, and tool integration (see, e.g., A15 and A16). The DSML
core language model and the DSML language-model constraints serve as an
input for the subsequent definition of the DSML’s concrete syntax and behavior
specification.

Tool support: The availability of tool support for different lifecylce stages
(development, verification, evaluation) of formally defined language-model con-
straint expressions (O3.1) determines whether adopting a specification or ex-
pression language is justified beyond completing and disambiguating the for-
malized language model. Support for constraint development relates to IDE
integration and IDE awareness of constraint expressions. Another important
issue is how constraint artifacts can be managed along with model artifacts.
Support for constraint verification includes, for example, model-checking sup-
port to assess the satisfiability of expressions. Finally, support for constraint
evaluation requires an execution engines (e.g. an OCL engine) for a given meta-
modeling infrastructure and linking back evaluation results into the development
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support. Depending on the specification or expression language adopted (e.g.
OCL, EVL), deployment of the DSML and the models created using the DSML
might be limited to certain MDD tool chains providing the necessary capabilities
(verification, evaluation).
Application. In our DSMLs, we encountered all options but code annota-
tions (O3.2) and unconstrained language models (O3.5; for examples that use
O3.5 see, e.g., P39, P58, P60, and P61). In particular, we provide constraint-
language expressions (O3.1) via the OCL for all of our DSMLs. This is because
we needed to define precise execution semantics for extended UML activities
(such as token flows in P1) and of the UML state machines (state/transition
models in P10). In eight out of ten DSMLs (P2–P9), these semantics are based
on the same generic and MOF-compliant metamodel and provide corresponding
metamodel extensions. The generic constraints were then mapped to a UML-
based language formalization (i.e. the actual language model and the respective
OCL expressions). Code annotations (O3.2) were not considered because the
additional model constraints should not be specific to any platform (e.g. model
representation APIs, generator language). Note that while we did not find any
source for constraining code annotations in our SLR, this may still be a viable
option for MDD environments that use a single, pre-determined platform tech-
nology (such as a Java or a C# framework for example). In P7, we additionally
incorporated constraining M2T transformations (O3.3). Textual annotations
(O3.4) are either used to complement OCL constraints or as full substitutes for
otherwise formally expressed constraints.
Sketch. Consider the following excerpt from P8: For a UML activity, each ac-
tion can be guarded by a constraint whose conditions refer to a set of operands
and checking operations. At runtime (level M0), the operations are called to
evaluate whether an action should be entered, depending upon some contextual
state. Constraint 1 shows a constraint-language expression (OCL) accompanied
by a complementary textual annotation. Constraint 5 exemplifies a constraint
expressed in natural language due to a model-level mismatch: While the con-
straint is captured at the language-model level (M2), the operation calls (whose
boolean return values are folded together to yield the runtime evaluation of the
guard) become manifest at the occurrence-level of an activity only (M0).

Constraint 1 : The operands specified in a ContextCondition are either ContextAttributes or
ConstantValues:

context ContextCondition inv:
self.expression.operand.oclAsType(OperandType)->forAll(o |
o.oclIsKindOf(ContextAttribute) or
o.oclIsKindOf(ConstantValue))

Constraint 5 : The fulfilledCD Operations must evaluate to true to fulfill the corresponding
ContextCondition.

4.4 D4 Concrete-Syntax Definition
Problem statement. In which representation should the domain modeler cre-
ate models using the DSML?
Decision context. The concrete syntax serves as the DSML’s interface. Dif-
ferent syntax types can be defined and tailored to the need of the modeler.
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For instance, different syntax styles may be chosen depending on the modeler’s
domain and/or software-technical proficiency.

The UML has a concrete syntax that provides a visual notation, with its
symbol vocabulary being organized into 14 diagram types [110]. The number
of distinct graphical symbols applicable in these diagram types ranges from 8
(in communication diagrams) to 60 (e.g. in class diagrams) [103]. A DSML
derived from the MOF and/or the UML can add new elements to this symbol
vocabulary or reuse existing ones (see also A10 and A17.

In addition, secondary, non-diagrammatic representation candidates are avail-
able for the MOF and for the UML. Important examples are textual, tree-
structured, and tabular notations (see, e.g., [160]). A textual concrete syntax
expresses DSML models in a text-based format. Typically, textual grammars
are used to define a textual concrete syntax (e.g. via the Extended Backus-Naur
Form [74]). Based on such a grammar a parser infrastructure is build (in some
cases the parser can even be generated automatically). A tree-structured con-
crete syntax is a graphical, but non-diagrammatic representation. It represents
a MOF or a UML model as a nested, collapsible structure with composite and
leaf elements having text labels and/or symbols (for example, the default UML
editor provided by the Eclipse MDT uses a tree structure). A tabular and form-
based concrete syntax organizes DSML elements in a table-like layout. Textual
labels and corresponding input fields populate a structure of table rows and
columns (such a syntax is similar to the user interface of language workbenches
[52]).
Decision options.

O4.1 Model annotation: Via UML comments, different types of complemen-
tary information can be attached to a model, such as keywords, narrative state-
ments, or formal definitions (see, e.g., [84]). The expressions can be predefined
at the level of the language-model definition or they are tailored for each in-
stance. In addition, the UML specification describes the use of keywords and
maintains a list of predefined keywords [110].

O4.2 Diagrammatic syntax extension: The DSML is to be used in a dia-
grammatic manner by extending one or multiple UML diagram types. Such a
syntax extension can be defined by creating novel symbols that are added to the
basic UML symbol set. The new symbols can be derived from existing shapes.
In principle, the design space for the new symbols is unlimited but has to be
aligned with the requirements of the target domain. However, existing guidelines
for designing UML symbols should be considered (e.g. avoidance of synographs;
see, e.g., [103]). The symbol description can be structured according to the
form adopted by the UML specification documents [110]: 1) A descriptive and
detailed statement about each symbol, 2) the optional elements of the symbols,
3) exact styling guidelines for the symbol’s components (e.g. text labels, font
faces), 4) an abstracted example of each symbol, and 5) a concrete example of
a model that uses the new symbol(s). This facilitates cross-reading between the
UML specification and the DSML extension document. A notable example of
a diagrammatic extension is the option to equip UML stereotype elements with
dedicated icons which appear as addition to the standard notions of stereotyped
elements (e.g. tags or nested icons in classifier rectangles [110]).

O4.3 Mixed syntax (foreign syntax): The DSML’s concrete syntax is de-
scribed either via a non-diagrammatic syntax type (textual, tree-based, or tab-
ular) or in a diagrammatic syntax not integrated with the UML. Thus, in con-
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trast to O4.2, this option would define a new and domain-specific diagram type.
Hence, the DSML concrete syntax is independent of and thereby foreign to the
basic UML symbol vocabulary. For example, model specifications in the foreign
syntax are managed and stored separately from the UML diagrams. The UML
base syntax is not extended, the symbols of the refined or modified metaclasses
are reused (see O4.6). The extension syntax maps only to the DSML abstract
syntax, no UML metamodel element is covered. The foreign syntax is used ex-
clusively to model the domain-specific parts of an extended UML model. For
instance, a non-diagrammatic foreign syntax can be embedded into the primary,
diagrammatic UML syntax (e.g. via UML comments or expression elements).
In the resulting mixed syntax, there is a hierarchical relation between the ba-
sic UML diagram notation and the nested foreign notation. To fully capture
a DSML model, the two syntaxes are mutually dependent. The unextended
UML base syntax cannot capture DSML specifics (unambiguously), the foreign
syntax cannot represent basic UML concepts.

O4.4 Frontend-syntax extension (hybrid syntax): The DSML’s concrete syn-
tax is non-diagrammatic (textual, tree-based, tabular) and is realized as an
extension to a non-diagrammatic frontend syntax to the UML (e.g. a textual
UML notation). As a result, the syntax extension represents a visual vocabulary
independent of the graphical UML base syntax. The UML base syntax remains
unchanged, the symbols of the refined or modified metaclasses are reused (see
O4.6). The extended frontend syntax has more expressive power than the UML
base syntax because the modeler can express DSML models unambiguously in
the frontend syntax. In the UML base syntax, the notational defaults (i.e., base
symbols representing DSML elements) limit the expressiveness (i.e., instances
of DSML elements cannot be distinguished from standard UML elements).

O4.5 Alternative syntax: For the DSML, a diagrammatic syntax extension
of the UML is applied (O4.2). In addition, an alternative foreign syntax (O4.3)
and/or an alternative frontend-syntax extension (O4.4) are introduced. As a
result, DSML models can either be expressed diagrammatically in the extended
UML notation, as a combination of standard UML diagrams with an (embed-
ded) foreign syntax, or as a non-diagrammatic specification in the extended
frontend syntax. Each of these three variants has equal expressive power in
terms of abstract syntax elements covered. Lossless back-and-forth transforma-
tions are possible.

O4.6 Diagram symbol reuse: No custom, DSML-specific extension to the
standard UML symbol vocabulary is created. With the family of UML spec-
ifications [110] not being explicit about the case of undeclared notations (i.e.,
missing “Notation” sub clauses), the effective reuse of symbols defined for UML
metaclasses refined by the DSML must be stated explicitly (see also A12). This
resembles the practice applied in the UML specification itself. For example, for
the Class metaclass which specializes the Classifier metaclass. Section 7.3.7
of the UML standard [110] says:

Notation
. . .
A class is shown using the classifier symbol.
. . .

O4.7 None/Not specified: The DSML specification does not contain any
notational details, not even the explicit reuse of diagram symbols (see O4.6).
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The concrete syntax remains undefined.
Decision drivers. An overview of positive and negative links between decision
drivers and available options is shown in Table 10.

Non-diagrammatic UML notation requirements: Textual notations [58] for
the UML are auxiliary representations and act as frontend syntaxes (O4.4). As
an important example, in XMI [109] a DSML concrete syntax extension would
be realized as an XML schema which extends the XMI schema itself. Besides,
as XMI is meant to represent MOF models natively, the availability of a UML
extension for XMI (e.g. the Eclipse UML2XMI schema) is a prerequisite. Major
pitfalls of an XMI-based extension are syntactic complexity and cognitive load
imposed on the modeler via the XML representation. Also, the respective UML
extensions are often vendor or tool specific.

HUTN [107] is an alternative that suffers from similar limitations as XMI.
In particular, HUTN is specified for use with the MOF or MOF-like modeling
infrastructures, such as Ecore. Thus, via HUTN only MOF views of the UML
can be captured. For example, while class and object models (diagrams) map
naturally to MOF models (HUTN specifications), other types of diagrams such
as UML activities are represented via their repository model notation [21, 110].
However, as a repository model, an activity is presented as an instance struc-
ture of the (extended) UML metamodel, omitting any process flow notation.
This surrogate view is therefore not lossless and the predominantly structural
repository perspective misses the process flow metaphor which might be critical
for the target domain of a DSML (see D1 in Section 4.1). Another comparable
but vendor-specific notation is offered by TextUML [33].

Moreover, other non-standard (grammar-based) textual notations that ex-
plicitly target (subsets of) the UML’s abstract syntax exist. For example, the
Activity Diagram Linear Form (ADLF [51]) provides a textual representation
(and parser infrastructure) based on a Yacc grammar specification for a subset
of UML activities (action nodes, control flows, control nodes). Similar text-
based but feature-wise incomplete forms for other UML metamodel fragments
have been proposed (see, e.g., [64] for an example of UML state machines). A
major limitation of such approaches is the missing support of, e.g., notations
interlacing between different diagram types of the UML (for example, nested
interactions in activities).

For a variety of tooling purposes, freestanding textual layout descriptions
for the UML come with a variety of modeling and auxiliary tools. Important
examples are direct diagram specifications (e.g. Graphviz-like specifications [7])
or intermediate textual notations (e.g. yUML [61]) for rendering and layouting
UML diagrams, also in an embedded manner for document processors. However,
these notations are freestanding in the sense that they are not meant to map to
a complete (sub-)set of the UML abstract syntax and to conform to notational
restrictions derived from the abstract syntax. Rather, these notations serve
backend purposes (e.g. diagram rendering and formatting).

Degree of cognitive expressiveness: UML stereotypes have limited visual ex-
pressiveness in contrast to tailored model elements (O4.2) which are not re-
stricted with respect to their visual representation. A textual representation
can have a steeper learning curve but might be used to express models in a
shorter period of time (for advanced users). Nevertheless, it is often not the
best way to get an overview (i.e. not well-suited for large models). A tree-based
syntax fits, for instance, a hierarchically structured DSML, but falls short in an
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adequate representation of process flow constructs such as loops and sequences.
Domain-specific application requirements: The UML includes symbolic (e.g.,

class, state, association, generalization) as well as iconic signs (e.g., actor, com-
ponent, fork and join nodes) for its graphical notation (concrete syntax) [110].
The perception of symbolic and iconic signs differ and is influenced by the in-
tended application domain as well as the professional background and individual
preferences of model users. A set of experiments published as [145] provides ev-
idence that UML models (class and collaboration diagrams) mostly consisting
of iconic signs (in the form of stereotype icons) improve comprehension com-
pared to models mostly consisting of symbolic signs (annotated non-stereotyped
elements). These findings are supported by results of another study in which
the authors conclude that “iconic UML graphical notations are more accurately
interpreted by subjects and that the number of connotations is lower for iconic
UML graphical notations than for symbolic UML graphical notations” [139].
While a DSML designer must keep this information in mind, the concrete syntax
must also be developed to fit its purpose (i.e. conform to domain requirements,
integrate with other DSMLs etc.). For example, when the domain’s graphical
notation set has a long history of symbolic signs, a change may cause confu-
sion and comprehension problems which may lead to a decrease of DSML users’
efficiency.

In the UML, stereotypes (O4.1/O4.6 without icons) are the native domain-
specific visual presentation option. As stereotypes employ the same notation as
classes, they count as symbolic signs unless icons are graphically attached to the
model elements extended by the stereotype (see also A10). As an example of
domain-specific notation characteristics, software engineers may be most famil-
iar with textual syntaxes (O4.3, O4.4). Regarding tool support, Eclipse MDT
provides a tree-based view (O4.4) in one of its standard UML model editors.
Moreover, no explicit concrete syntax (O4.7) might be necessary if the DSML
only defines language-model constraints, limited behavioral specifications, or
provides tool support for standard UML means (see also A14).

Degree of required modeling-tool support: A textual concrete syntax (O4.4)
can be processed by a parser and (most often) does not need specific editor tools
(as they are required for a graphical/diagrammatic syntax). It can be integrated
with existing developer tools, such as version management systems or diff and
merge tools (an advantage for joint modeling as well as model evolution). Due
to its hierarchical form, a tree-based syntax is easy to be serialized to or created
from XML-based textual representations (e.g. XMI). Modeling support for UML
stereotypes (O4.1/O4.6) as well as for tree-based syntaxes exists in standard
tools, but must be explicitly integrated for new graphical elements (O4.2).

Table 10: Positive/negative links between drivers and options.

Driver/Option O4.1 O4.2 O4.3 O4.4 O4.5 O4.6 O4.7

Non-diagrammatic UML notation
requirements o o � � � o o

Degree of cognitive expressiveness � + +/� +/� +/� � o
Domain-specific application re-
quirements � + + + ++ � +/�

Degree of required modeling-tool
support ++ � +/� + �� ++ o
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Decision consequences.
Usability evaluation: The DSML syntax is especially important from the

DSML user perspective. If a DSML is mainly used by non-programmers, a
special focus on usability aspects is needed.

Output artifacts: After defining suitable graphical and/or textual notation
symbols, as well as composition and production rules, we receive the DSML
concrete syntax definition as an output from this decision point. Together with
all other artifacts created during the DSML development process, the concrete
syntax definition is then mapped to the features of a selected software platform.
Application. In our case studies we provide a couple of different concrete syn-
tax definitions such as UML stereotype-specific annotations for reusing symbols
(P1, P3, P7, P9, P10), new diagrammatic modeling elements (P1–P5, P8, P10),
and an alternative syntax style (a combination of a diagrammatic syntax ex-
tension and an alternative foreign syntax; P9). Additionally, one of our DSMLs
applies extended language-model constraints and does not need a concrete syn-
tax (P6). Approaches from the related work use the full range of options for
concrete syntax definitions (see, e.g., P17, P30, P53, P58, and P60). As an
example for an option not covered so far, P53 defines a textual frontend-syntax
extension.
Sketch. Figure 4 shows an example of two concrete syntax definitions consisting
of a diagrammatic representation on the left hand side and its textual equivalent
on the right hand side (excerpt taken from P9). In the example, an audit rule
is specified for an information system which records data when a failed login
attempt from a user with administrator privileges is recognized (see [71] for
details). Both syntaxes operate on the same abstraction level and can be used
complementary (O4.5).

«AuditEventSource» Login failure :
  loginFailure() -> LoginInfo
    { userID, timestamp }
  <AR> LoginError -> LoginInfo :
    { AuditTrail::log() }
      <C> [userID, OperatorKind::equal, 1]

userID : Integer
timestamp : TimeExpression

«signal»
LoginInfo

publish

«AuditEventSource» loginFailure()

ERP-System

AuditSystem

condition

IfAdmin

userID
OperatorKind::equal
1

C

AuditTrail

log()

LoginError AR

subscribe : LoginInfo

Figure 4: Exemplary graphical and textual concrete syntax [71].

4.5 D5 Behavior Specification
Problem statement. Do we have to define (additional) behavioral semantics
for the DSML? If so, in which way should the behavior of DSML elements be
specified?
Decision context. The behavioral specification of a DSML (sometimes re-
ferred to as dynamic semantics) defines the behavioral effects that result from
using one or more DSML language element(s). It determines how the language
elements of the DSML interact to produce the behavior intended by the DSML
engineer. Moreover, the behavior specification defines how the DSML language
elements can interact at runtime [148]. The behavior of a DSML can be de-
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fined in various ways, for instance, via behavioral models or (formal as well as
informal) textual specifications.

Explicitly specified behavior allows for a correct mapping of the (platform-
independent) DSML specifications to a certain software platform (see D6 in
Section 4.6). However, sometimes a DSML’s behavior is not explicitly specified.
Behavioral relationships may also emerge from the language-model formalization
or the language-model constraints definition. Furthermore, accompanying tex-
tual descriptions, while not formally specifying behavior, may hint at intended
usage and interaction scenarios of DSML language elements. If no behavioral
specification exists, the DSML’s runtime behavior is implicitly defined via the
DSML’s platform integration (e.g. via chains of method calls in a source code
implementation).
Decision options.

O5.1 M1 behavioral models: UML behavioral models (e.g. state machines,
interaction diagrams, or activity diagrams) can be used to specify the behavior
of language-model elements (see also A18). For instance, in the UML, a classifier
can reference owned behavior specifications. Behavior is then executed in the
context of the directly owning classifier [110].

O5.2 Formal textual specification: Behavior is textually specified via formal
statements (e.g. mathematical expressions). In this context, a formal textual
specification is a set of expressions in a formal language at some level of ab-
straction [93] with the purpose that its correctness can be proven (e.g. by using
the Z notation [75, 76]).

O5.3 Informal textual specification: In contrast to formal specifications, in-
formal textual specifications may be ambiguous. Thus, they are used to infor-
mally specify the behavior of a DSML, for example via narrative free-text.

(O5.4 Constraining model execution:) Behavioral models are interpreted via
an execution engine (e.g. xMOF [98] based on the fUML [115] specification).
Constraints are implemented in the execution engine and enforced at runtime
(e.g. behavioral semantics can be defined via fUML activities).

O5.5 None/Not specified: No explicit behavior specification.
Combination of Options: For instance, textual comments (O5.3) are used to

annotate models (O5.1) or to clarify formal specifications (O5.2).
Decision drivers. An overview of positive and negative links between decision
drivers and available options is shown in Table 11.

Model consistency preservation: UML behavioral models (O5.1) allow for a
native integration of behavioral semantics into UML/MOF-based DSMLs (see
also A18). For example, behavior of a DSML element can be defined via an
“owned behavior” specification [110]. This facilitates support for integrated
modeling tools as well as execution engines (O5.4). Nevertheless, some semantics
elements may be left unconstrained in the specifications to defer behavioral
interpretations to the platform integration phase (which could slightly differ
from one software platform to the other; e.g. the semantics of concurrency or
event dispatch scheduling in the fUML [115]).

Behavioral definition requirements: For narrow domains, no explicit behavior
specification may be needed (O5.5). Behavioral intentions can be drawn from
the descriptive part of the language model, its formalization, and the language-
model constraints. In such a case, an explicit behavior specifications may be
expendable.
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Limited expressiveness: If, for some behavioral expressions, it is not feasi-
ble or even impossible to be sufficiently expressed via models (O5.1) or formal
statements (O5.2), informal textual specifications are an option (O5.3). For
instance, the specification of the fUML execution model incorporates a degree
of generality for the semantics of inter-object communication mechanisms [115].
The execution model is written as if all communications are perfectly reliable
and deterministic (e.g. it is assumed that signals and messages are never lost or
duplicated) which is not realistic. As raising exceptions and exception handling
are excluded from the fUML specification, an informal and descriptive addition
(O5.3) may be useful.

Behavior verification requirements: Depending on the language and/or for-
malism that is to specify behavior, the correctness of formal specifications
(O5.2) and executable (i.e., well-formed) models (O5.4) can be proven (see,
e.g., [32, 75, 76]). If it is the objective to verify all artifacts a DSML consists
of (such as, language model, language-model constraints, behavior specifica-
tion, platform-specific artifacts), O5.2 and O5.4 are options. This is in contrast
to non-executable behavioral models (O5.1) and informal textual specifications
(O5.3) for which behavioral semantics may remain underspecified. The benefit
of proving the correct behavior of a DSML may come with the additional ef-
fort of a precise specification and the development (or, at least, employment) of
adequate verification methods and tools.

Visualization preferences: Behavior specifications may be aligned with other
visualization options. For instance, if all DSML artifacts (such as, language-
model definition, language-model constraints, concrete syntax, platform-specific
artifacts) are text-based, a textual behavior specification may satisfy user re-
quirements best (O5.2, O5.3). For example, in case of the fUML, UML models
can be entirely represented using the action language ALF [114]. ALF acts as
a textual surface representation for UML modeling elements that can be used
to specify executable behavior.

Table 11: Positive/negative links between drivers and options.

Driver/Option O5.1 O5.2 O5.3 O5.4 O5.5

Model consistency preservation + � � + o
Behavioral definition requirements o o o o ++
Limited expressiveness �� �� ++ o o
Behavior verification requirements � ++ � ++ o
Visualization preferences +/� +/� +/� o o

Decision consequences.
Semantic variation points: No behavior specification or implicitly defined

behavior (O5.5) may introduce semantic variation points. The same applies to
under specified informal textual definitions (O5.3). If precise behavior specifica-
tions are missing, it is nearly impossible to verify the platform integration (i.e.,
to prove that the DSML behaves as intended). A missing behavioral guidance
may result in multiple (incompatible) possibilities for defining execution seman-
tics while mapping the DSML to a software platform. Semantic variation points
affect the consistency (e.g. to ensure intended behavior), traceability (e.g. to be
able to reproduce behavior), and transferability (e.g. to enable a mapping to
another software platform) of a DSML.
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Platform-specific behavior specification: When no explicit behavior is de-
fined (O5.5), a DSML’s behavior specification is deferred to the platform in-
tegration phase. Runtime semantics (e.g. function calls or if-clauses) can be
used to establish a platform-specific behavior specification. Platform-bound
execution semantics do not provide a generalized description of a DSML’s be-
havioral intentions (i.e., no explicit behavioral documentation exists). Mapping
the DSML to another platform may be cumbersome as DSML behavior needs
to be abstracted from the platform-specific developments first. Furthermore, no
automatic behavior verification is possible (in contrast to O5.4 for example).

Different behavior enforcement points: Constraining model executions (O5.4)
establish two behavior enforcement points: 1) during model execution and 2) af-
ter each execution step [32]. In the first case, behavioral conformance is checked
at each execution step. The second option relies on an execution trace: after
each execution step, the resulting model state is stored. Behavioral properties
are then validated against models from this trace. The behavioral enforcement
options then depend on the corresponding execution engine. Furthermore, all
behavior specification options (O5.1–O5.4) allow to check behavioral aspects
before mapping the DSML to a specific platform (e.g. peer-reviewed behavioral
model walk-through via informal textual specifications; O5.3). If no behavior is
defined (O5.5), the earliest checking point is at the time of platform integration
(e.g. reviewing or debugging source code).
Application. As most of our case studies defines a DSML for a narrow do-
main they do not include explicit behavior specifications (P1, P2, P4–P10).
In P3, we employ UML state machines (O5.1) in combination with narrative
free-text (O5.3). In related approaches, we identified different options of behav-
ioral specifications. For example, formal textual specifications (mathematical
models; O5.2) in P30 and informal textual specifications (narrative semantics
descriptions; O5.3) in P53. No approaches constraining models via an execution
engine (see, e.g., [32, 98]) qualified for the decision catalog. This may be due
to the fact that we did not find any publications targeting executable models
prior to 2010. Furthermore, first (beta) versions of related specifications were
just recently published in 2010 [114] and 2011 [115], respectively.
Sketch. In P3, a UML state machine (O5.1) with accompanying informal
textual descriptions (O5.3) are used to specify states for process-related duties
(see Figure 5). For different tasks in a business process, a duty defines an action
which must be performed by a certain subject [149]. Among others, P3 extends
the UML metamodel with a new Duty metaclass for which the state machine
in Figure 5 defines possible state changes (e.g. a transition from a passive to
a pending state). Additionally in P3, the occurring sequence of steps when
entering a Duty are listed textually (O5.3).

4.6 D6 Platform Integration
Problem statement. How should the DSML artifacts be mapped to (and/or
integrated with) a software platform?
Decision context. Before platform integration, we have defined the DSML’s
core (i.e., formalized) language model, a set of (additional) structural and be-
havioral constraints, as well as a concrete syntax specification. At this stage,
DSML models (or an executable subset of the models) should be mapped to a
software platform (e.g. programming languages, frameworks, components, ser-
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Figure 5: Exemplary behavior specification via a UML state machine [135].

vice applications) and to customized platform artifacts (e.g. source code and
execution specifications that are tailored for the respective DSML).

Most often platform integration is achieved via model transformations (see,
e.g., [100, 40]) that convert a model into another platform-specific model (also:
model-to-model transformation, M2M) or into executable software artifacts
(also: model-to-text transformation, M2T; see also A4). Alternatively, DSML
models can also be evaluated and executed without intermediate transforma-
tions (to be more precise DSML models are then directly transformed into exe-
cutable machine code via a corresponding DSML interpreter; see also A19).
Decision options.

O6.1 Intermediate model representation: Based on a DSML model (i.e.,
the source model), a second and intermediate model (i.e., the target model)
is generated in an M2M transformation step. This intermediate model can
be described via an own metamodel. The source model and target model are
separate model entities. From the intermediate model we can create platform-
specific artifacts/models (e.g. using M2T transformations). This intermediate
structure can be used to optimize the source model (e.g. model canonization
and compression) and to attach debugging meta-data (see, e.g., [39]). More
specifically, the intermediate model can act as a decorator and/or as an adapter
(see, e.g., [53]).

A decorator model (e.g. an Eclipse Modeling Framework (EMF) generator
model [147]) manages references to the source DSML model and stores meta-
data (e.g. code docstrings, prefixes for generated code entities, code package
names) which are specific to the platform integration tasks (e.g. code gener-
ation). As a result, the domain-specific model data and the transformation-
specific model data can be maintained independently from each other.

An adapter model does not preserve links back to the source DSML model
but replicates the DSML model in a restructured manner. The restructuring
aims at facilitating subsequent platform integration tasks (e.g. code generation)
by adjusting the model structure (see, e.g., [39]). For example, to overcome cer-
tain abstraction mismatches between the DSML model (e.g. graph abstractions
in UML activities) and a family of platform-specific artifacts (e.g. block-based
process descriptions [99]).

O6.2 Generation template: M2T transformation is achieved by taking model
instances as the input to a transformation template for generating execution
specifications (e.g. markup documents) and/or source code. Templates access

31



input model data via metamodel-based selections and extraction expressions
(e.g. OCL or XPath) and integrate the extracted model data into opaque output
strings that represent code fragments. Examples are the Eclipse-based Xpand
or the Epsilon Generation Language (EGL).

O6.3 API-based generator: The DSML core language model, and thereby
each DSML model (i.e. each instance of the core language model) is internally
represented as a collaboration of programmatic entities (e.g. objects). Based on
a dedicated API for traversing this internal representation (e.g. a visitor-based
API [39] or a mixin-based API [158]), code generation is achieved by instrument-
ing this API (e.g. implementing visitors or mixins) to travel the object-based
DSML model representation and to serialize the model data to an output string
(see, e.g., [144]). The resulting platform-specific code fragments are independent
from the generator language or the generator implementation.

O6.4 (Direct) model execution: The target software platform (and its DSML-
specific functions) can be accessed through the same programming language
which is used to represent the internal, programmatic DSML model structure
(e.g. object-based). Alternatively, inter-language bridges (e.g. wrappers, cross-
language reflection) are available to realize such a feature. Given that this
internal model representation is accessible through an API (e.g. using visitors
[39] or mixins [158]), the internal representation is processed and instrumented
to emit platform instructions directly (rather than to generate and to store away
instruction statements to be performed at a different point in time). In partic-
ular, this options (re)uses and/or extends an existing interpreter or compiler
infrastructure for the execution of DSML models.

O6.5 M2M transformation: The platform integration is performed via (mul-
tiple) endogenous M2M transformations (e.g. specified via M2M transformation
languages, such as, ATL [19] or ETL [88]). The source and target models share
the same metamodel infrastructure on the M3 level (e.g. several refined platform-
specific UML profiles). This is in contrast to O6.1 which describes platform-
specific model chains not necessarily sharing the same metamodel (e.g. a trans-
formation between a UML-based model and an intermediate Java object model).
Target models can either be executed directly (O6.4) or they need further pro-
cessing, for instance, via subsequent M2T transformations (O6.2, O6.3).

O6.6 None/Not specified: No platform integration is performed; for example,
the DSML serves only for documentation purposes, for sketching a software
design, or for analyzing requirements.

Combination of options: Template-based (O6.2), generator-driven (O6.3),
and model-interpreting (O6.4) platform integration can be combined with inter-
mediate structures (O6.1) to benefit from the advantages of an intermediate rep-
resentation. In this way, transformation templates can operate on compressed
and canonicalized DSML models, generators run against decorator models pro-
viding generation-specific meta-data, and a model interpreter finds a prefab-
ricated and execution-oriented model representation (e.g. an unfolded control
flow).

In model-driven language workbenches [52], intermediate models (O6.1) can
be instantiated from metamodels that are defined via the host language used by
the corresponding target platform (e.g. JetBrains MPS/Java). In such a setup,
platform integration involves two steps: 1) A M2M transformation turning the
DSML model into a programmatic language model; 2) the direct interpretation
of the model via the interpreter/compiler infrastructure of the respective host
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language (see O6.4; e.g. for prototyping and debugging purposes). Additionally,
source code artifacts can be generated (O6.2) to keep the code base separated
(e.g. for deployment purposes).
Decision drivers. An overview of positive and negative links between decision
drivers and available options is shown in Table 12.

Targeting multiple platforms: An intermediate model (O6.1) can act as a
common, canonicalizing representation that can be mapped to multiple target
platforms which have similar platform-specific abstractions (e.g. a family of
process-engine execution specification languages such as BPEL4WS and WS-
BPEL). If the constructs of the modeling language differ significantly from their
intended platform integrations, an intermediary representation can increase the
efficiency of subsequent M2T transformations. For instance, in P7, we transform
into an intermediate model first, to bridge between the graph-based PIMs and
the block-based PSMs (see also [99]).

Maintainability effort of static code fragments: With an API-based generator
(O6.3), the code independent from the DSML model must be integrated with
the generator implementation (e.g. a custom visitor). When using generation
templates (O6.2), non-changeable and non-parametric code fragments can be
clearly separated from generator statements in templates [144]. Depending on
the relative amount of static code fragments, an API-based generator involves
extra maintenance effort for managing the interwoven fragments of generative
code and static code.

Non-executable models: If the DSML should only serve modeling purposes,
for example via the definition of a UML profile (O2.2) and the utilization of
a standard modeling editor, no explicit platform integration might be needed
(O6.6). In this case, the DSML is not meant to be executed on a software
platform (see also A16). However, the DSML might primarily serve as a com-
munication instrument between domain experts and software engineers.

Table 12: Positive/negative links between drivers and options.

Driver/Option O6.1 O6.2 O6.3 O6.4 O6.5 O6.6

Targeting multiple platforms ++ o o o o o
Maintainability effort of static code frag-
ments o + � o o o

Non-executable models �� �� �� �� �� ++

Decision consequences. Depending on which option(s) were chosen, this
decision-making step produces a set of output artifacts. Important examples
include transformation specifications, test suites (e.g. to test generated code),
and platform extensions. The latter are functional additions to the target soft-
ware platform to cover DSML-specific execution requirements (e.g. through a
framework extension or integration of auxiliary frameworks).

Constraint inconsistencies: If the PIM-to-PSM model transformations are
performed via multiple M2M transformations generating intermediate model
representations (O6.1, O6.5), it has to be ensured that the language-model
constraints (O3.1) also hold in the intermediate model(s). Either a second set
of explicit constraints (O3.1) must be provided for the intermediate model or
constraining M2M transformations (O3.3) must be applied.

Different constraint enforcement points: Code generation templates (O6.2)
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are applied to instances of the language model. Therefore, constraints enforced
on the language model (O3.1) can also be checked for the generator templates
(e.g. with EVL, O3.3; see also A21). However, this only prevents wrong usage
of the construction rules in the code templates. As no constraints are enforced
on the generated code, it may not entirely conform to the constraints defined at
the level of the DSML’s language model. This means, in contrast to language
workbenches, code templates work by generating free-text not conforming to
any metamodel.
Application. In P9, we transform Ecore-based language models into Java code
via generator templates (O6.2). In P5, no platform integration has been per-
formed (O6.6) because the primary contribution was a non-executable DSML
to capture selected security concerns in UML activities. Only later, in P7, the
DSML was integrated with the SoaML in an executable manner, with support
for generating web Services execution specifications. For this purpose, we em-
ployed API-based generators (O6.3) for intermediate models (O6.1) in P7 (a
combined option). This is because we had to address certain abstraction mis-
matches between the DSML model and the platform-specific model.

While not explicitly documented, platform integration and DSML execution
(e.g. for testing and simulation purposes) via direct model execution (O6.4) is
prepared in several of our projects (e.g. P3, P4, and P8). Based on a model
representation and model runtime environment implemented in a DSL toolkit
comparable to the one in [158], object-oriented DSML model representations
can be created and inspected. For platform integration, these representations
could be instrumented for model execution (O6.4).

In related approaches, we find, for instance, intermediate models (O6.1) in
P17, generation templates (O6.2) in P17 and P39, API-based templates (O6.3)
in P58, M2M transformations (O6.5) in P17, and no documented platform in-
tegration (O6.6) in P30, P53, P60, and P61.
Sketch. The following EGL code shows an excerpt from an M2T generation
template applied in P9. Here, a Java method is generated for the specification
of an audit rule according to the structure of a corresponding metamodel. An
audit rule consists of a set of evaluable conditions, whereas the validity of each
condition is checked via a generated if-clause. True is returned (see variable
passed) when all condition checks passed successfully, otherwise the method
returns false.

[% operation auditRule(auditRule) { %]
private boolean [%=auditRule.name%]() {
Map<String, String> data;
boolean passed = true;
[% for (signal in auditRule.subscribe) {
out.println(’data = ’ + signal.name + ’.getData();’);
for (condition in auditRule.conditions) {
out.println(’if (!(’ + condition.name + ’)) passed = false;’);

}
} %]
return passed;

}
[% } %]
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5 Associations Between Options
A decision option chosen at one decision point may influence options at the same
or at subsequent decision points (for example, a choice can favor, determine, or
exclude following options). By reviewing our DSML projects and related ap-
proaches (see Table 13 in Appendix B) using the decision catalog from Section 4,
we identified 21 decision associations within a single decision (Section 5.1) or
between two or more decisions (Section 5.2; see also Figure 6). Each association
is denoted by a pairing of affected decision options as explained in Section 4.
In Figure 6, an association is shown as an edge connecting either two encircled
options (e.g. O5.4↔O6.4) or connecting an option and a decision point (shown
as a rectangle). An edge between an option and a decision point shows an asso-
ciation between the option and all options of the corresponding decision point
(e.g. O1.4↔D2 which is equivalent to O1.4↔O2.1–O2.4).
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Figure 6: Overview of associations between decision options.

5.1 Associations Between Options of One Decision Point
A1 O1.1↔O1.4 Textually accompanied formal diagrammatic models:8 Diagram-
matic models complying to a formal specification (O1.4; e.g., the MOF) may
not be sufficient to describe a DSML’s language model unambiguously without
further explanations. Textual descriptions (O1.1) were found for all of the 90
DSML projects (see Table 13), particularly explaining the semantics of accom-
panying language models and providing additional information (e.g., intentions
behind model and package designs, explanation of model elements, attributes,
and associations; see, e.g., P34 [132] or P37 [165]).

8The association was added or revised based on the findings on smallest option subset
as well as the option combinations identified for generating prototype option-sets and largest
components [140].
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A2 O3.1↔O3.4 Textually accompanied constraint-language expressions:8 Sim-
ilarly to the former association (A1), constraint-language expressions are also
annotated textually (e.g., an OCL statement is explained in natural language,
as well; see, e.g., P30 [16] or P40 [32]). This is merely due to increase the read-
ability of constraints as the reader may not be familiar with a certain constraint
language (e.g., the OCL). Furthermore, this association emerges also from the
fact that not every language-model constraint can formally be described with a
constraint language (see next association A3).

A3 O3.4↔O3.1–O3.3 Impossible constraint evaluation: Some constraints
cannot be captured by the means of constraint languages and the underlying
language models, code annotations, or model transformation templates (see,
e.g., [110]). Such constraints have to be provided as text annotations in a
natural language. Either these constraints have a documentation purpose only,
or they serve for porting the constraints to another environment as they are
not locked to a concrete expression form. For example, in P8, language-model
constraints are defined via the OCL. However, some constraints need to be
expressed in natural language due to a model-level mismatch. Constraints are
captured at the language-model level (M2), but some operation calls become
manifest at the occurrence level of an activity (M0) only.

A4 O6.2↔O6.5 Model transformation chains:8 The observed association is
characterized by endogenous M2M transformations (O6.5) prior to the code gen-
eration step (O6.2; see, e.g., P17 [4] or P32 [5]). In these M2M transformations,
source and target models share the same metamodel infrastructure on the M3
level (e.g., the MOF). For example, we found the association being employed
for analyzing models (P32) as well as for generating test cases (P17). On the
one hand, P32 provides an approach for analyzing OCL-constrained UML class
models for inconsistencies via Alloy [79]. A UML class model is transformed into
an instance model of the Alloy metamodel (both instantiating the MOF; O6.2).
From the Alloy model, a M2T transformation generates a textual representation
(O6.5) which serves as input to the Alloy analyzer. Located conflicts can then
be traced back to the original model elements in the UML class diagram. On the
other hand, P17 uses M2M transformations to generate platform-independent
and platform-specific test models (e.g., UML sequence diagrams) from the ac-
tual application models (O6.2). Via M2T transformations application code and
corresponding test cases are generated (O6.5). In both examples, the Alloy
model (P32) and the platform-specific application and test models (P17), all
serve as intermediate representations (O6.1) from which textual artifacts are
created.

5.2 Associations Between Options of Two or More Deci-
sion Point

A5 O1.2↔O3.1 Shared expression foundations: Adopting certain formal textual
(e.g. set-theoretical) representations affect the choice of a language (e.g. the
OCL) for defining constraints over the core language model explicit and vice
versa. If there is a common definitional foundation of both languages, a trans-
formation is facilitated. For example, as basic OCL semantics have been defined
in terms of a set-theoretical model (see, e.g, [126]), set theory and set algebras
are a natural choice to define a language model at the CIM (computation in-
dependent model) level. This underlying correspondence allows for mapping

36



set definitions (e.g. set builders) to equivalent, built-in or custom-defined OCL
expressions (e.g. OCL selectors).

A6 O1.4↔D2 Language-model formalization as refinement:8 If the domain
description includes MOF or UML diagrams, a stepwise transition into a UML-
based core language model is facilitated. In particular, an association between
options O1.4 and O2.2 is a candidate (see, e.g., P16 [82] or P20 [102]). Neverthe-
less, in some DSML projects found via the SLR, the definition of a MOF-based
or modeling-language independent metamodel and the corresponding mapping
to a UML profile was not documented explicitly (see, e.g., [43, 152, 162]).9 This
leaves the reader of profile applications, for instance, in the example sections
of the papers, with assuming a direct 1:1 mapping of language-model elements
into equally named stereotypes—a rather silent naming convention. This lack of
explicit documentation is problematic, because it is implicitly assumed that the
modeling-language independent metamodel and the UML profile share under-
lying semantics, which is not necessarily the case. As an example contributing
to overcome such impedance mismatches emerging due to diverging definitional
foundations of modeling languages, in [90] an approach for the semi-automatic
transformation of MOF-based conceptual domain models (O1.4) into UML pro-
files (O2.2) is presented.

A7 O2.1↔O3.4 Constraint limitations for structural models: An M1 struc-
tural model (e.g. a class model) defines a language model at the UML instance
level (i.e. at the M1 layer [116]). This means, no metamodel is employed to
reflect the domain space and, therefore, domain abstractions can neither be
instantiated nor explicitly constrained for their usage as modeling constructs
(contradicting the meta-layer architecture of MDD). Thus, restrictions can only
be defined in terms of text annotations attached to the language model.

A8 O2.1↔O4.1 Impossible diagram extensions: The decision to define the
core language model at the UML M1 level (O2.1) is in conflict with a UML
syntax extension (O4.2). In other words, if we use an M1 model to define the
DSML’s core language model, an extension of the UML’s concrete syntax (within
the UML framework) is not an option. In this case, model annotations (O4.1)
remain the only viable option. However, UML profiles can tailor existing UML
metaclasses. In particular, profiles can be used to define dedicated icons which
appear as full replacements for the standard notation of stereotyped elements
and which can act as a limited diagrammatic syntax extension.

A9 O2.2↔O3.1∨O3.4 Constrained UML profiles:8 The specification of a
UML profile (O2.2) was found accompanied by either formal (O3.1) or tex-
tual (O3.4) constraint definitions (or both; see, e.g., P70 [161] or P80 [78]). The
profile-specific part represents an extension to A2 in Section 5.1 and may indi-
cate a demand for the definition of dedicated constraints besides native UML
profile semantics. This can be interpreted as a possible hint that the definitional
foundations of particular UML-profile-specific elements, such as Stereotype or
Extension, are not explicit enough to fulfill the requirements for formalizing a
DSML language model.

A10 O2.2↔O4.1∧O4.6 Native stereotype specification:8 A UML profile defi-
nition (O2.2) for the language-model formalization was observed in combination
with a concrete syntax specification via annotating model elements (O4.1) and

9Please note that projects exhibit formalization and/or critical documentation defects
were excluded from the extraction of encoded DSML design decisions.
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reusing diagram symbols (O4.6; see, e.g., P22 [121] or P54 [6]). This association
has its cause in the stereotype definition of the UML specification: “A Stereo-
type uses the same notation as a Class, with the addition that the keyword
«stereotype» is shown before or above the name of the Class” [110]. Hence, a
reused symbol (from Class; O4.6) is annotated with the keyword «stereotype»
(O4.1). Please note that this association does not cover icons graphically at-
tached to the model elements extended by the stereotype (O4.2).

Furthermore, by applying the native UML profiling mechanism, the abstract
and the concrete syntax of extended model elements are coupled [120]. A stereo-
type inherits all semantics (abstract syntax) and the notation (concrete syntax)
from its extending UML base class. A DSML designer has to choose a base class
whose either abstract syntax or concrete syntax most closely matches that of the
domain-specific concept. In every case, either the semantics or the notation may
not resemble the DSML’s application domain. On the one hand, by focusing
on concrete-syntax conformance, the stereotyped element may need to be con-
straint heavily (an increase in complexity). On the other hand, by focusing on
abstract-syntax conformance, the addition of keywords and/or icons might not
be sufficient or suitable for the intended domain. An approach to overcome this
discrepancy is presented in [120]. Therein, the abstract and concrete syntax is
decoupled by defining notational extensions via the UML Diagram Interchange
specification (DI [108])10 allowing the modeling of arbitrary notations.

A11 O2.2–O2.4↔D4 Concrete syntax drives UML extension: The formal-
ization strategy for the language model affects the selection of a concrete syntax
style. If the language model is defined via a UML profile (O2.2), different pre-
sentation options for stereotypes may be considered. A textual presentation
(i.e., tags) does not extend the basic UML symbol vocabulary (O4.1, O4.6;
see former association A10). Stereotype icons, however, are extensions in the
sense of O4.2. For a metamodel extension (O2.3), the definition of new mod-
eling elements (O4.2) is an option. The different combined diagrammatic and
non-diagrammatic options are also applicable.

A12 O2.3↔O4.6∧¬O4.1 Underspecified concrete syntax definition:8 Extend-
ing the UML metamodel (O2.3) without an explicit concrete syntax definition
(O4.6)—even not annotating model elements (O4.1)—was an observed associ-
ation (see, e.g., P13 [14] or P88 [34]). The authors of these DSMLs silently
assume that symbols defined for UML metaclasses (in the UML specification
[110]) are inherited by the DSML-specific extensions (e.g., via a generalization
relationship). This is in contrast to the practice applied in the UML specification
itself (see O4.6 in Section 4.4).

A13 O3.1↔O2.2–O2.4 Constraint inconsistencies: A combination of differ-
ent language-model formalizations (e.g. a UML profile and a metamodel ex-
tension) may require the duplication and modification of constraint definitions.
For instance, in P7 [66, 69] we define both, a UML metamodel extension and
a profile definition to integrate with the SoaML specification [113]. Hence, we
define constraint-language expressions as OCL invariants over both language
model formalizations. Thus, both constraint definitions need to be maintained
and held consistent.

A14 O3.1∧O3.4↔O4.7 Tailoring semantics only:8 Customizing the UML

10Please note that the UML Diagram Definition specification (DD [111]) has replaced the
DI specification.

38



or any extensions of it (e.g., SoaML, SysML [112]) via explicit constraint ex-
pressions (O3.1, O3.4) without a concrete syntax definition (O4.7) to specify a
DSML was an observed association (see, e.g., P40 [32] or P84 [123]). This asso-
ciation bears the risk that while the formal semantics of DSML elements may
be well-defined, they cannot be distinguished from non-constrained UML ele-
ments (see also A12 and A17). The DSML should only be used in isolation, not
mixing concrete syntaxes of tailored and UML model elements. The problem of
ambiguity exists also for extensions of DSMLs (e.g., a revision of a previously
defined DSML). Whether new features are added or formerly defined semantics
are changed, a unique identifier (e.g., version number, modified name) should
be used to distinguish between different releases of a DSML.

A15 O3.2↔O6.6 Specific host/platform language: If code annotations were
used to express constraints over the core language model, a runtime environment
to execute the code statements would be needed, for instance, as part of the
platform integration step. As an example, consider Java expressions attached
to an extended UML metamodel. In such a case, a JVM is needed to evaluate
these Java expressions and execute them on the system-level.

A16 O3.3↔O6.6 Mandatory platform integration: Whether constraining
M2M or M2T transformations are actually an option for defining language-
model constraints depends directly on the decision if we want to perform plat-
form integration or not. Likewise, if the use of constraining M2M/M2T trans-
formations is a mandatory requirement known up front (e.g. due to the toolkit
choice or in a legacy system scenario), integrating language-model constraints
into the transformation template suite avoids duplicated specification effort as
well as redundant model-level artifacts (e.g. OCL constraints plus correspond-
ing template expressions). However, the specialized constraint languages com-
ing with M2M/M2T generation languages (e.g. EVL for EGL) are commonly
restricted in their constraint-expressing power compared to model-level con-
straint languages (e.g. an equivalent to OCL’s message introspection might be
missing). Besides, integrating constraint-checking and generation-specific tem-
plate expressions can hinder a separation of concerns by including expressions
which are irrelevant for the actual generation task. In particular, this may cause
overly complex or even conflicting template code. These pitfalls can be avoided
when applying the constraint-checking M2M templates in a transformation of
the DSML into an intermediate model representation (O6.1), with the actual
platform integration step (M2T code generation) being performed on the vali-
dated intermediate model.

A17 O4.6↔O2.2 Symbol ambiguity in diagrams: When reusing existing
UML symbols, the resulting “extended” diagrams are most often ambiguous.
In particular, using the same symbol for different concepts means that refining
concepts cannot be distinguished from the refined ones. To introduce a simplis-
tic discriminator without creating new symbols, one can provide a UML profile
to define a series of stereotype tags which can then be attached to the reused
symbols to denote the DSML-specific refinements. In this case, UML profiles
serve primarily for clarifying the concrete syntax elements used for a DSML. This
resembles the usage of standard profiles as defined by the UML [110], however,
without adding to the abstract syntax and semantics of the language model. In
P7 [66, 69], for example, we do not define a dedicated concrete syntax (that is,
no diagrammatic extension) to a newly defined metamodel element called Se-
cureInterface. It is only distinguishable from a pre-existing ServiceInterface
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via its profile mapping and stereotyped representation as «SecureInterface».
A18 O5.1↔O3.1 M1 behavioral models as constraints: M1 models can be at-

tached to metamodel elements for behavioral specifications (e.g. via the owned-
Behavior relation of a BehavioredClassifier [110]). In doing so, they are
constraining/defining the behavior of metamodel elements. For example, in P3
[135, 137] we make use of a UML state machine to define states (e.g. passive,
pending, discharged) and transition options between those states for DSML
elements.

A19 O5.4↔O6.4 Integrated model execution: Interpreting UML models di-
rectly (e.g. via an execution engine) demands a precise specification of 1) DSML
structural properties, 2) well-formed instance models, 3) execution semantics,
and 4) operational semantics. Regarding (1), structural properties of a UML/MOF-
based DSML (domain elements, relationships etc.) are represented via a formal-
ized language model (i.e., the abstract syntax of a DSML; D2). An executable
model must adhere to certain well-formedness criteria (2). For a DSML, these
are specified via language-model constraints (D3) and enforced at the level of
the instance model. Execution semantics (3) of a DSML are defined via be-
havior specifications (D5) to be processed via a certain platform (D6). The
definition of behavioral constraints (O5.4) and the model execution (O6.4) may
be supported by the same model execution environment. Operational semantics
(4) at the level of the executing environment (i.e. interpretation of the platform-
specific implementation as a sequence of computational steps) are specific to an
execution engine and do not need to be defined specifically via the DSML.

A20 O6.2↔O1.4∧O2.2 Existing toolchain support:8 Tools for editing UML
models, including the definition and application of profiles (O2.2), are nowadays
frequently available (e.g., MagicDraw, Eclipse Papyrus, Rational Software Ar-
chitect, Enterprise Architect, Modelio, UModel). In addition, template-based
M2T transformations (O6.2) are a widely supported platform integration tech-
nique in contemporary MDD tool chains, and a variety of template language
implementations exist, such as, Eclipse Xpand, Xtend2, EGL, JET, or Acceleo
(see, e.g., [40, 129]). Several UML model editors provide combined tool support
for M2T transformations in an MDD-based way, as well (e.g., in the Eclipse-verse
based on EMF-compliant models). Thus, the observed association is character-
ized by a high availability of modeling tools and generator engines (see, e.g.,
P12 [3] or P67 [127]). Nevertheless, a formal diagrammatic model not compli-
ant with the UML specification (e.g., an ER model; O1.4) must be mapped to
native UML constructs first (i.e. a profile definition) to benefit from standard
tool support. Alternatively, the EMF-based technical projection of the EMOF
[116] (i.e. an Ecore model; O1.4) is also a candidate option to facilitate toolchain
support as automatic transformations into and from UML class models exist.
Furthermore, a partially tool-supported approach for the semi-automatic trans-
formation of MOF-based models into UML profiles is presented in [90] (see also
A6).

A21 O6.2↔O3.5 Platform-specific constraint enforcement:8 This observed
association is characterized by a late and platform-specific constraint enforce-
ment point. Corresponding DSMLs do not define constraints for the language
model explicitly (O3.5), but integrate them into (templates of) code generators
(see, e.g., P51 [72] or P85 [85]). As generation templates (O6.2) are applied to
instances of the language model, constraints can basically be enforced (see also
A16). However, constraints are checked late in the DSML development process;
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i.e. at the time of executing M2T transformations. Until platform integration is
performed, the conformance of models to their corresponding constraints is not
validated. Furthermore, constraints need to be duplicated for different generator
engines and for the support of multiple platforms. In addition, a DSML designer
has to keep in mind that—independent of an existing or lacking definition of
language model constraints—no constraints are enforced on the generated code
(i.e. the output of a M2T transformation is not interpreted by its generator
component).
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A Revision to the Initial Version of the Catalog
Based on the findings derived from the extracted and codified decision data (via
the SLR), we revised the catalog of decision records—the initial version was
published as [67, 68]—to reach its current state (this document). The revision
involved changes to the content as well as the presentation as follows:

Document structure

• Defined decision template structure: We specified the descriptive parts
which must necessarily be included in a decision record (problem state-
ment, decision context, decision drivers etc.) and added a conceptual
overview (see Section 2.2).

• Added format convention: We added a convention for referencing decision
points, corresponding options, associations between options, and DSML
projects in a consistent way (see Section 2.4).

• Added revision history: The differences and additions to the initial version
of the catalog [67, 68] are explained (this section).

Decision points (records)

• Added decision-point descriptions: We added a description for each deci-
sion point considered (D1–D6; see Section 2.1). The section also highlights
the decision records which were applied frequently in our SLR study [140].

• Added decision record: We added a decision record and corresponding op-
tions for a newly introduced decision point, namely behavior specification
(D5; see Section 4.5).

Decision options

• Added decision options: By studying the 80 related DSMLs found, we
required a more fine-grained encoding schema which let us to the definition
of a new decision point and new (corresponding) options:

– O5.1–O5.5: Along with adding a new decision point (D5; see above),
decision options O5.1–O5.5 were introduced. The pool of 80 DSMLs
(obtained via the SLR) also provides known-usage examples for op-
tions which we were lacking from our initial resource collection (see,
e.g., P53 [142] and P84 [123]).

– O6.5: The description of alternative options for D6 (see Section 4.6)
was extended to differentiate between different styles of M2M trans-
formations (exogenous, endogenous; see O6.1 and O6.5). Again, we
complemented each amendment to this revised description with ex-
amples (see, e.g., P17 [4] and P35 [2]).

• Updated decision options: Descriptions of decision options were revised
according to the examples found by studying the 80 DSMLs. In addition,
selected DSMLs out of this pool were added as known uses of an option
to the decision records. The following changes in response to our findings
are notable:

56



– O2.1: The description was limited to M1 structural models only
(see Section 4.2) as the newly introduced decision point D5 covers
behavioral specifications (including M1 behavioral models; O5.1).

– O2.2: The description was extended to cover the extension and/or
redefinition of existing profile(s); rather than introducing new profiles
only (see Section 4.2). Examples of this practice can be found in P36
[55, 97] and in P54 [6].

– O4.3: The description was relaxed so that diagrammatic notations
other than UML diagram notations (or variants thereof) are covered
(see Section 4.4). This was triggered by examples found in P30 [16]
and in P39 [92].

• Made links between drivers and options explicit: Positive and negative
links between decision drivers and available options are listed in an overview
table in the decision drivers section of each decision record (see Sec-
tions 4.1–4.6).

• Added option thumbnails: A comparatively large share of observed DSML
designs can be described based on nine out of the 27 decision options
provided by the revised catalog.11 We, therefore, added thumbnail de-
scriptions of nine base options to the catalog (see Table 6 in Section 3).

• Highlighted options: Each of the nine frequent options featured by found
prototype option-sets and largest subsets was, in addition, highlighted in
the individual decision-record descriptions by underlining the correspond-
ing option number and title (see Sections 4.1–4.6).

• Marked candidate options: Three options (O3.2, O3.3, and O5.4; see Sec-
tions 4.3 and 4.5) not applied in any of the selected DSML projects were
marked as candidate options in the decision-record descriptions (option
number and title are put in parentheses). The options are preserved in
the catalog because they have been identified as such by secondary stud-
ies and/or there are known uses which are documented in selected DSML
designs not recovered or confirmed by empirical evidence such as with this
SLR study.

• Adapted presentation: On the one hand, the representation of decision-
option sets allowed us to remove pseudo-options (and the respective codes)
which signal a combination of options taken at one decision point, which
turned out not informative enough for our study [67, 68]. On the other
hand, in some DSML projects it was not unambiguously clear whether an
option had been applied or not. Thus, we introduced a representation for
denoting options as underspecified (for O2.4, see, e.g., P41 [54] and P88
[34] in Table 13 in Appendix B).

• Updated associations between options: Based on the findings on smallest
option subsets as well as the option combinations identified for generating
prototype option-sets and largest components, we revised option associ-
ations within decision points (options of one and the same record) and

11Note that there are actually 31 decision codes (see, e.g., Table 13), the difference of four
codes serving for coding pseudo-decision options; e.g., not taking any decision.
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between them (see Section 5). These associations are also reflected in the
subsections on the decision context, options, drivers, and consequences of
the respective decision records (see Sections 4.1–4.6).

• Added navigation structure: We added navigation structures (reading se-
quence for option descriptions, feature diagrams etc.) to the catalog to
reflect possible reading paths based on the intention of a planned or DSML
under review.

DSML projects encoding

• Complemented encoded decision options: The initially encoded design de-
cisions and options for our ten DSML projects were updated (according
to the new encoding scheme) and the retrieved 80 related DSML projects
were added to Table 13 in Appendix B.

• Added domains and diagram types: For each DSML, we added its applica-
tion domain(s) and the tailored UML diagram type(s). An overview table
of all 90 DSML projects was added providing the name, the domains, the
diagram types, and the option set for every DSML (see Table 14 in Ap-
pendix C). Furthermore, Table 2 in Section 1 and Table 15 in Appendix D
list the frequency of DSML-tailored diagram types and DSML application
domains.
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B Encoded Design Decisions and Options
This section provides an overview of chosen options per design decision for all
90 DSML projects (see Table 13). The DSML projects P1–P10 were performed
by ourselves, the remaining projects were collected via the SLR (the protocol
of the SLR is available at [140]). The SLR has been performed to find relevant
UML/MOF-based DSML engineering approaches and to extract design decisions
and corresponding options from them.
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C Domains, Diagram Types, and Option Set per
DSML

Table 14 lists all 90 DSMLs this catalog is based on, of which ten are our own de-
velopments (P1–P10), the rest has been retrieved via the SLR (P11–P90). The
first column states the consecutive DSML project numbering used throughout
this paper, the DSML’s name (either specified by the authors themselves or—
when no explicit name was mentioned—one chosen by us), and a reference to
the corresponding publication(s). In the second column, the DSML application
domain(s) are encoded according to the 2012 ACM Computing Classification
System (CCS).12 We have extracted the UML diagram type(s) tailored by a
DSML as classified by the UML superstructure itself (shown in the third col-
umn of Table 14). The last column lists the decision-option set representing a
DSML’s design as encoded according to our catalog (see Section 4). Please note
that Table 13 in Appendix B provides more details on the option set for each
DSML in another view.

Table 14: Domains, diagram types, and option set per DSML project.

DSML Domain(s) Diagram
type(s) Option set

P113

ConcernActivities
[151]

Access control, Software design
engineering Activity

{1:1; 2:2; 2:3; 3:1; 3:4;

4:1; 4:2; 4:6; 5:5; 6:6}

P2
BusinessActivities
[150]

Access control, Business process
modeling, Software security en-
gineering

Activity,
Class

{1:1; 1:2; 1:4; 2:3; 3:1;

3:4; 4:2; 5:5; 6:1; 6:4}

P313

UML-PD
[135, 137]

Access control, Business process
modeling, Software security en-
gineering

Activity,
Class

{1:1; 1:2; 1:4; 2:2; 2:3;

3:1; 3:4; 4:1; 4:2; 4:6;

5:1; 5:3; 6:6}
P4
UML-DEL
[136, 137]

Access control, Business process
modeling, Software security en-
gineering

Class
{1:1; 1:2; 1:4; 2:3; 3:1;

3:4; 4:2; 5:5; 6:6}

P5
SOF
[70]

Business process modeling,
Software security engineering Activity

{1:1; 2:3; 3:1; 3:4; 4:2;

5:5; 6:6}

P6
UML-PD
[134]

Access control, Business process
modeling, Software security en-
gineering

Activity,
Class

{1:1; 2:3; 3:1; 3:4; 4:7;

5:5; 6:6}

P713

SOFServices
[66, 69]

Business process modeling,
Service-oriented architectures,
Software security engineering,
Web services

Activity,
Compos-
iteStructure

{1:1; 1:2; 1:4; 2:2; 2:3;

3:1; 3:3; 3:4; 4:1; 4:6;

5:5; 6:1; 6:3}
P8
UML-CC
[138]

Access control, Business process
modeling, Software security en-
gineering

Class
{1:1; 1:2; 1:4; 2:3; 3:1;

3:4; 4:2; 5:5; 6:6}

P913

SecurityAudit
[71]

Publish-subscribe / event-based
architectures, Software security
engineering

*14

{1:1; 2:2; 2:3; 3:1; 3:4;

4:1; 4:3; 4:5; 4:6; 5:5;

6:2}

12http://www.acm.org/about/class
13The DSML’s option set contains (at least) one of the seven prototype option-sets shown

in Tables 4 and 5.
14The DSML does not tailor a UML diagram type specifically; for example, a stereotype

extension of a UML element applicable in all diagram types, such as, Element (see, e.g., [27, 71])
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DSML Domain(s) Diagram
type(s) Option set

P1013

MTD
[159]

Object oriented languages, Soft-
ware architectures

Activity,
Class,
Object,
StateMachine

{1:1; 2:2; 2:3; 3:1; 3:4;

4:1; 4:2; 4:6; 5:5; 6:6}

P11
ADModel
[25]

Business process modeling Activity
{1:1; 2:3; 3:5; 4:7; 5:5;

6:3}

P1213

AspectSM
[3]

Robustness, Software develop-
ment techniques, Software test-
ing and debugging

StateMachine
{1:1; 1:4; 2:2; 3:1; 4:1;

4:6; 5:5; 6:2}

P1313

UML4SPM
[14]

Software development process
management

Activity,
Class

{1:1; 2:3; 3:5; 4:6; 5:5;

6:6}

P1413

MDATC
[13]

Reusability, Software devel-
opment techniques, Software
product lines

Activity,
Package

{1:1; 2:3; 3:5; 4:6; 5:5;

6:6}

P1513

TLM
[81]

Model verification and valida-
tion, System on a chip Class

{1:1; 2:2; 3:1; 4:1; 4:6;

5:5; 6:2}

P1613

UPSS
[82]

Service-oriented architectures
Class, Com-
positeStruc-
ture

{1:1; 1:4; 2:2; 3:4; 4:1;

4:6; 5:5; 6:6}

P1713

BIT
[4]

Software testing and debugging Class
{1:1; 2:2; 3:1; 4:1; 4:6;

5:5; 6:1; 6:2; 6:5}

P1813

UML4PF
[62, 63]

Design patterns, Model check-
ing, Requirements analysis, Se-
curity requirements

Class
{1:1; 2:2; 3:1; 4:1; 4:6;

5:5; 6:6}

P1913

UP4WS
[42]

Service-oriented architectures,
Web services Class

{1:1; 2:2; 3:4; 4:1; 4:6;

5:5; 6:2}

P2013

CB
[102]

Reusability, Software develop-
ment techniques

Class, Com-
ponent

{1:1; 1:4; 2:2; 3:4; 4:1;

4:6; 5:5; 6:1; 6:3; 6:5}

P2113

AbstractSet
[91]

Model verification and valida-
tion

Class, Pack-
age

{1:1; 1:4; 2:2; 3:5; 4:1;

4:6; 5:5; 6:6}

P2213

C2style
[121]

Architecture description lan-
guages, Systems analysis and
design

Component,
Sequence

{1:1; 2:2; 3:1; 3:4; 4:1;

4:6; 5:5; 6:6}

P2313

MARTE-DAM
[17, 18]

Embedded systems, Fault tree
analysis, Real-time systems,
Software fault tolerance, Trans-
portation

Component,
Sequence,
StateMa-
chine, Use-
Case

{1:1; 1:4; 2:2; 3:1; 4:1;

4:6; 5:5; 6:3; 6:5}

P2413

UMM-LocalChoreographies
[65]

Business process modeling, Or-
chestration languages Activity

{1:1; 2:2; 3:1; 4:1; 4:6;

5:5; 6:6}

P2513

RichService
[47]

Service-oriented architectures,
Web services

Class, Com-
ponent,
StateMachine

{1:1; 1:4; 2:2; 3:5; 4:1;

4:6; 5:5; 6:6}

P2613

UML-PMS
[56]

Performance, Ubiquitous and
mobile computing Activity

{1:1; 2:2; 3:4; 4:1; 4:6;

5:5; 6:6}

or Constraint (see, e.g., [37]).
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DSML Domain(s) Diagram
type(s) Option set

P2713

SOA
[9]

Service-oriented architectures
Class, Com-
ponent,
Deployment

{1:1; 1:4; 2:2; 3:1; 4:1;

4:2; 4:6; 5:5; 6:6}

P2813

SWS
[57]

Semantic web description lan-
guages, Web services Activity

{1:1; 1:4; 2:2; 3:5; 4:1;

4:6; 5:5; 6:6}

P2913

eSPEM
[46]

Software development process
management

Activity,
StateMachine

{1:1; 2:3; 2:4; 3:5; 4:6;

5:5; 6:6}

P3013

RCSD
[16]

Transportation Class, Object
{1:1; 2:2; 3:1; 3:4; 4:1;

4:3; 4:6; 5:2; 6:6}

P31
UML-SOA-Sec
[131]

Business process modeling, Se-
curity requirements, Service-
oriented architectures, Web ser-
vices

Activity
{1:1; 2:2; 3:5; 4:1; 4:2;

4:6; 5:5; 6:6}

P3213

UML2Alloy
[5]

Model verification and valida-
tion

Class, Pack-
age

{1:1; 1:4; 2:2; 3:1; 3:4;

4:1; 4:6; 5:5; 6:1; 6:2;

6:5}
P3313

ExSAM
[12]

Avionics, Embedded systems,
Engineering

Compos-
iteStructure

{1:1; 1:4; 2:2; 3:4; 4:1;

4:6; 5:5; 6:6}

P3413

UACL
[132]

Availability, Telecommunica-
tions

Class, Com-
ponent

{1:1; 1:4; 2:2; 3:1; 3:4;

4:1; 4:6; 5:5; 6:6}

P35
SECTET
[2]

Service-oriented architectures,
Software security engineering,
Web services

Class
{1:1; 2:1; 3:5; 4:7; 5:5;

6:2; 6:5}

P3613

UML4SOA
[55, 97]

Service-oriented architectures
Activity,
Class, Com-
ponent

{1:1; 2:2; 2:3; 3:1; 4:1;

4:2; 4:6; 5:5; 6:1; 6:3;

6:5}
P3713

SafeUML
[165]

Avionics, Software safety Class, Pack-
age

{1:1; 1:4; 2:2; 3:1; 3:4;

4:1; 4:6; 5:5; 6:6}

P3813

IStarDW
[154]

Data warehouses, Security re-
quirements

Class, Pack-
age

{1:1; 2:2; 3:1; 3:4; 4:1;

4:2; 4:6; 5:5; 6:5}

P3913

TestOracle
[92]

Software testing and debugging StateMachine
{1:1; 2:2; 3:5; 4:1; 4:3;

4:6; 5:5; 6:2}

P40
MOCAS
[32]

Model checking, Model verifica-
tion and validation Object

{1:1; 2:3; 3:1; 3:4; 4:7;

5:5; 6:4}

P41
CCFG
[54]

Model verification and valida-
tion Activity

{1:1; 2:3; 3:5; 4:2; 5:5;

6:6}

P4213

TimeSeriesAnalysis
[166]

Data mining, Data warehouses Class, Object
{1:1; 2:2; 3:1; 4:1; 4:2;

4:6; 5:5; 6:6}

P43
ADOM-UML
[124]

Model verification and vali-
dation, Requirements analysis,
Software design engineering

*
{1:1; 1:2; 2:2; 3:5; 4:1;

4:6; 5:5; 6:6}

P4413

PredefinedConstraints
[37]

Model checking *
{1:1; 2:2; 3:4; 4:1; 4:6;

5:5; 6:6}
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DSML Domain(s) Diagram
type(s) Option set

P4513

TAM-PM
[89]

Graphical user interfaces, Web
interfaces

Activity,
Class

{1:1; 1:4; 2:2; 3:1; 4:1;

4:6; 5:5; 6:2}

P46
SPEM4MDE
[44]

Software development process
management

Activity,
StateMachine

{1:1; 2:3; 3:1; 3:4; 4:2;

5:5; 6:5}

P47
CSSL
[20]

Collaborative and social com-
puting

Class,
StateMa-
chine

{1:1; 2:3; 3:1; 3:4; 4:5;

5:5; 6:6}

P48
SystemC
[125]

Embedded systems, System on
a chip

Compos-
iteStructure,
StateMachine

{1:1; 2:2; 3:5; 4:1; 4:2;

4:6; 5:5; 6:6}

P4913

UML2Ext
[24]

Requirements analysis, Soft-
ware product lines UseCase

{1:1; 2:3; 3:5; 4:6; 5:5;

6:6}

P5013

HM3

[31]
Hypertext languages Class, Use-

Case
{1:1; 2:2; 2:3; 3:1; 3:4;

4:1; 4:6; 5:5; 6:6}

P5113

WCAAUML
[72]

Web applications, Web inter-
faces

Class, De-
ployment,
Package

{1:1; 2:2; 3:5; 4:1; 4:6;

5:5; 6:2}

P5213

IEC61508
[118, 119]

Model verification and valida-
tion, Safety critical systems

Class, Pack-
age

{1:1; 1:4; 2:2; 3:1; 3:4;

4:1; 4:6; 5:5; 6:6}

P5313

UCDM
[142]

Use cases UseCase
{1:1; 2:3; 3:1; 3:4; 4:4;

4:6; 5:3; 6:6}

P5413

SPArch
[6]

Software architectures, Soft-
ware development process man-
agement

Class, Com-
ponent, Pack-
age

{1:1; 1:4; 2:2; 3:5; 4:1;

4:6; 5:5; 6:6}

P5513

MoDePeMART
[23]

Measurement, Metrics, Soft-
ware performance

Class,
StateMa-
chine

{1:1; 1:4; 2:2; 3:5; 4:1;

4:6; 5:5; 6:6}

P56
UPCC
[94]

Enterprise data management,
Service-oriented architectures,
Web services

Class
{1:1; 2:1; 3:5; 4:7; 5:5;

6:6}

P57
SELinux
[1]

Access control, Operating sys-
tems security, Security require-
ments

Class
{1:1; 1:3; 2:2; 3:5; 4:1;

4:6; 5:5; 6:6}

P58
UML-GUI
[143]

Graphical user interfaces Class, Com-
ponent

{1:1; 1:2; 2:1; 3:5; 4:7;

5:5; 6:3}

P5913

SHP
[105]

Software security engineering Class, Pack-
age

{1:1; 2:2; 3:1; 3:4; 4:1;

4:6; 5:5; 6:6}

P6013

SMF
[101]

Fault tree analysis, Safety criti-
cal systems, Software safety

Class, Com-
ponent, Use-
Case

{1:1; 1:3; 1:4; 2:2; 3:5;

4:1; 4:6; 5:5; 6:6}

P6113

DMM/UCMM
[41]

Graphical user interfaces Class, Use-
Case

{1:1; 1:4; 2:3; 2:4; 3:5;

4:6; 5:5; 6:6}

P6213

CUP 2.0
[15]

Graphical user interfaces
Activity,
Class, Pack-
age

{1:1; 2:2; 3:4; 4:1; 4:2;

4:6; 5:5; 6:2}
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type(s) Option set

P6313

REMP
[77]

Embedded systems, Real-time
systems, Software testing and
debugging

Class,
StateMa-
chine

{1:1; 2:2; 3:1; 4:1; 4:6;

5:5; 6:6}

P6413

DPL
[10]

Web services Activity
{1:1; 2:2; 3:5; 4:1; 4:6;

5:5; 6:2}

P6513

WebRE
[87]

Requirements analysis, Web ap-
plications

Activity, Use-
Case

{1:1; 1:4; 2:2; 3:5; 4:1;

4:2; 4:6; 5:5; 6:6}

P6613

AOM-AD
[38]

Software development tech-
niques Activity

{1:1; 1:2; 2:2; 3:4; 4:1;

4:6; 5:5; 6:6}

P6713

Reliability
[127]

Software reliability
Interac-
tionOverview,
Sequence

{1:1; 1:4; 2:2; 3:4; 4:1;

4:6; 5:5; 6:2}

P6813

UML-AOF
[83]

Software development tech-
niques

Class, Pack-
age

{1:1; 2:2; 3:4; 4:1; 4:6;

5:5; 6:6}

P69
CompSize
[95]

Embedded systems, Estimation,
Measurement, Metrics

Class, Com-
ponent

{1:1; 2:2; 3:5; 4:1; 4:6;

5:5; 6:6}

P7013

ArchitecturalPrimitives
[161]

Design patterns, Software archi-
tectures Component

{1:1; 2:2; 3:1; 3:4; 4:1;

4:6; 5:5; 6:6}

P7113

CUP
[8]

Error detection and error cor-
rection, Model checking

Compos-
iteStructure,
Sequence

{1:1; 2:2; 3:1; 4:1; 4:6;

5:5; 6:6}

P7213

GWfM-Sec
[59]

Orchestration languages, Soft-
ware security engineering, Web
services

Activity
{1:1; 2:2; 2:3; 3:4; 4:1;

4:6; 5:5; 6:6}

P7313

SoC
[133]

Hardware description languages
and compilation, System on a
chip

Activity,
Class,
Compos-
iteStructure,
Deployment

{1:1; 2:2; 3:4; 4:1; 4:6;

5:5; 6:6}

P7413

UMLtrust
[155]

Scenario-based design, Software
development techniques, Trust
frameworks

Class, Pack-
age, UseCase

{1:1; 2:2; 3:4; 4:1; 4:2;

4:6; 5:5; 6:6}

P7513

HERM
[153]

Database design and models Class
{1:1; 1:2; 1:4; 2:2; 3:1;

3:4; 4:1; 4:6; 5:5; 6:6}

P7613

WebML
[104]

Web applications, Web inter-
faces

Class, Com-
ponent,
Compos-
iteStructure

{1:1; 1:4; 2:2; 3:1; 4:1;

4:2; 4:6; 5:5; 6:6}

P77
ODP
[128]

Distributed architectures

Class, Com-
ponent,
Object, Se-
quence

{1:1; 2:2; 3:5; 4:1; 4:6;

5:5; 6:6}

P7813

EIS
[106]

Enterprise information systems Activity,
Component

{1:1; 2:2; 3:4; 4:1; 4:2;

4:6; 5:5; 6:6}

P7913

SPTExt
[11]

Embedded systems, Real-time
systems Activity

{1:1; 1:2; 1:3; 2:2; 3:4;

4:1; 4:6; 5:5; 6:6}
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P8013

CAV
[78]

Software architectures, Soft-
ware evolution Class

{1:1; 2:2; 3:4; 4:1; 4:6;

5:5; 6:6}

P8113

SOA-NF
[157]

Service-oriented architectures Compos-
iteStructure

{1:1; 2:2; 3:4; 4:1; 4:6;

5:5; 6:2}

P82
SECRDW
[141]

Data warehouses, Security re-
quirements

Class, Pack-
age

{1:1; 2:3; 3:5; 4:7; 5:5;

6:6}

P8313

SECDW
[156]

Data warehouses, Security re-
quirements Class, Object

{1:1; 2:2; 3:1; 3:4; 4:1;

4:2; 4:6; 5:5; 6:6}

P84
EM
[123]

Electronic commerce, Web ap-
plications

Class,
StateMa-
chine, Use-
Case

{1:1; 2:1; 3:1; 3:4; 4:7;

5:1; 5:3; 6:6}

P8513

WS-CM
[85]

Web applications, Web services
Class,
StateMa-
chine

{1:1; 2:2; 3:5; 4:1; 4:6;

5:5; 6:2}

P8613

aspectJ
[49]

Software development tech-
niques

Class, Pack-
age

{1:1; 2:2; 3:1; 3:4; 4:1;

4:6; 5:5; 6:2}

P8713

ContextUML
[122]

Service-oriented architectures,
Web services Class

{1:1; 2:2; 3:5; 4:1; 4:6;

5:5; 6:2; 6:3}

P8813

DifferenceMM
[34]

Software evolution Class
{1:1; 2:3; 3:5; 4:6; 5:5;

6:6}

P8913

Versioning
[27]

Software evolution, Version con-
trol *

{1:1; 1:4; 2:2; 3:5; 4:1;

4:6; 5:5; 6:3}

P90
NFA
[164]

Avionics, Model checking Class
{1:1; 2:3; 3:5; 4:3; 5:5;

6:5}
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D Application Domains
To map the domain coverage of the 90 DSML projects, we classified every DSML
according to the 2012 ACM Computing Classification System (CCS).15 Table 15
shows the frequency of categories assigned to the selected DSML projects. In
total, we used 63 distinct CCS categories and we assigned 177 category tags.

Table 15: Frequency of DSML application domains.

Domain Frequency

Service-oriented architectures 11
Software security engineering 11
Web services 11
Business process modeling 10
Access control 7
Model verification and validation 7
Software development techniques 7
Embedded systems 6
Security requirements 6
Model checking 5
Web applications 5
Data warehouses 4
Graphical user interfaces 4
Requirements analysis 4
Software architectures 4
Software development process management 4
Software testing and debugging 4
Avionics 3
Real-time systems 3
Software evolution 3
System on a chip 3
Web interfaces 3
Design patterns 2
Fault tree analysis 2
Measurement 2
Metrics 2
Orchestration languages 2
Reusability 2
Safety critical systems 2
Software design engineering 2
Software product lines 2
Software safety 2
Transportation 2
Architecture description languages 1
Availability 1
Collaborative and social computing 1
Data mining 1

15http://www.acm.org/about/class
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Domain Frequency

Database design and models 1
Distributed architectures 1
Electronic commerce 1
Engineering 1
Enterprise data management 1
Enterprise information systems 1
Error detection and error correction 1
Estimation 1
Hardware description languages and compilation 1
Hypertext languages 1
Object oriented languages 1
Operating systems security 1
Performance 1
Publish-subscribe / event-based architectures 1
Robustness 1
Scenario-based design 1
Semantic web description languages 1
Software fault tolerance 1
Software performance 1
Software reliability 1
Systems analysis and design 1
Telecommunications 1
Trust frameworks 1
Ubiquitous and mobile computing 1
Use cases 1
Version control 1
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