
Cognitive Load in Programming Education: Easing the Burden on Beginners
with REXX

Winkler, Till; Flatscher, Rony G.

Published in:
Central European Conference on Information and Intelligent Systems

Published: 01/01/2023

Document Version:
Peer reviewed version

Link to publication

Citation for published version (APA):
Winkler, T., & Flatscher, R. G. (2023). Cognitive Load in Programming Education: Easing the Burden on
Beginners with REXX. In Central European Conference on Information and Intelligent Systems (pp. 171-178).
University of Zagreb, Faculty of Organization and Informatics.

Download date: 11. Jul 2025

https://wu-test.elsevierpure.com/en/publications/7e74882f-d250-4887-98d6-763831b3340a

Cognitive Load in Programming Education: Easing the
Burden on Beginners with REXX

Till Winkler, Rony G. Flatscher

Vienna University of Economics and Business

Institut für Wirtschaftsinformatik und Gesellschaft

Welthandelsplatz 1, 1020 Wien, Austria
{till.winkler, rony.flatscher}@wu.ac.at

Abstract. To learn and teach programming is very
difficult, often leads to poor results, and causes many
students to drop out or turn away from the subject.
Cognitive load theory can help to understand the
challenges students face, improve programming
education, and select an appropriate language for
instruction. In this paper, we take a theoretical look
at programming education and, in particular,
language characteristics that reduce students'
cognitive load and thus enable rapid learning and
frustration-free productivity. We introduce the REXX
language and some of its favorable characteristics
that make it possible to teach novices programming
within a single semester. In this limited time, students
are empowered to program Microsoft products
(Windows, Office), address the command line, grasp
the basics of object-oriented programming, use Java
classes, and create portable graphical user interfaces
(GUIs) with JavaFX.

Keywords. Programming education, Cognitive load
theory, Human-oriented programming, REXX,
ooRexx

1 Introduction

It has always been a topic of discussion as to which
programming language should be taught. With
Wikipedia listing 691 (“List of programming
languages,” 2023) different programming languages,
such a choice can be overwhelming. Moreover, when
beginners ask an expert, they usually get answers
based on individual preferences, which can be
confusing. It can be equally confusing to rely on
popularity ratings of programming languages. Until
the mid-1980s, the most popular choices were
Fortran, Pascal, or Ada; in the 1990s it was clearly C;
in the late 2000s it was Java; and today it is, with a
28.4% certainty, Python (“Data is Beautiful,” 2019;
PYPL, 2023). The fact that language popularity scores
nowadays are often calculated based on the frequency
of online searches, such as for tutorials, should not be

ignored (PYPL, 2023). Since we believe that it is not
the amount of support needed that matters, but the
ease with which a language can be learned, we would
like to present our experience with using REXX in
programming classes. Specifically, we will discuss
how language characteristic can place an unnecessary
cognitive burden on students. In addition, we will
give illustrative examples of REXX, a language we
consider particularly suitable for teaching.

Learning a programming language can be
challenging for beginners, as they need to grasp the
syntax, semantic and language-specific concepts such
as variables, data types, arithmetic, and others (Sands,
2019; Stachel et al., 2013). Moreover, students must
quickly apply new knowledge to solve complex and
often novel problems. It is well known that it is a
combination of students' lack of experience,
understanding new concepts, applying syntactic and
semantic rules, and solving new complex problems
that can be overwhelming (Sands, 2019).
Programming courses are generally considered
difficult, with high dropout rates and poor outcomes;
some students cannot program loops even after
several semesters (Robins et al., 2003). Many
programming educators find that students achieve
poor grades or, more importantly, become
disillusioned with programming (Garner, 2002). This
is in contrast to what we observe in REXX teaching.
According to the course evaluation (WS22/23), 83.3%
of students would definitely recommend the class to
others and consider the demands to be reasonable
(66.6%) or slightly taxing (33.3%).

The second author became acquainted with REXX
on IBM mainframes in the 1980s and developed an
experimental course using the PC version of REXX.
To his surprise, it was possible to teach programming
concepts much faster compared to VBScript, a
language considered easy to learn at the time. REXX
was developed at IBM (Cowlishaw, 1987) with the
motivation of creating a "human-oriented" language
—by keeping it small—that is easy to learn, code,
remember, and maintain (Fosdick, 2005). At that time
REXX was extremely successful; Amiga OS used it
as a script language (“AmigaOS Manual: Arexx,”

2023) and several companies developed interpreters.
Today, REXX is still an integral part of IBM
mainframes and has been also formalized as an
ANSI/INCITS X3.274 standard (ANSI, 1996). In the
1990s, IBM developed an object-oriented successor to
REXX called ooREXX, which is open source and has
been available for all major systems since 2005
(ooRexx, 2023). Under Windows, ooREXX allows
the direct use of COM/OLE, which enables direct
interaction with many Microsoft products. For
applying the acquired skills on other platforms, a Java
bridge called BSF4ooREXX is available, which
disguises Java as ooREXX and allows for the use of
Java classes (BSF4ooRexx, 2023).

Over the past 35 years, what was once an
experimental course has evolved into two
programming courses1 that teach students the
necessary skills to solve complex programming tasks
in a single semester (Flatscher & Müller, 2021).
Within the first two months, during "Business
Programming 1" (BP1), students learn basic
programming concepts, fundamentals of object-
oriented programming and everything necessary to
use COM/OLE in Windows (BP-1, 2023; Flatscher &
Müller, 2021). The following two months, during
"Business Programming 2" (BP2), are dedicated to the
Java bridge (BSF4ooRexx, 2023) and include the use
of Java classes including the development of platform
independent GUI applications with JavaFX (BP-2,
2023; Flatscher & Müller, 2021). Some students are
even so motivated that they write seminar papers,
bachelor's and master's theses that go far beyond what
they originally learned (WU, 2023). We believe that
this learning outcome and motivation is primarily
related to language characteristics of REXX that
reduce students' cognitive load and minimize
frustration. Before looking more closely at specific
language characteristics, we will introduce the
perspective of cognitive load theory on learning,
problem solving and programming education.

2 Cognitive Load Theory

Human expertise and problem-solving skills, are
based on knowledge stored as so-called schemata in
our long-term memory (Sweller & Van Merriënboer,
2005; Garner, 2002). A schema might be anything
that can be treated as a single element; for instance, a
word, a mathematical formula, or a particular
programming concept (Garner, 2002). During
learning, multiple new or previously disconnected
pieces of information are bundled together into a
single, more complex element or schema (Paas et al.,
2003). For example, it is almost impossible to
remember all the digits of a telephone number
individually unless bundled into more complex
elements, such as, country code (two digits), area

code (four digits) and the remainder as three-digit
blocks ("141" instead of "1 - 4 – 1"). In this way, a
twelve element/digit number can be remembered
easily. The same basic principle applies to any kind of
learning, including physics, mathematics, spoken
languages and programming. The general goal of
teaching is to enable the construction of increasingly
complex schemata and to facilitate their automation
through practice (Paas et al., 2003). A practiced stick
driver has automated the procedure of shifting gears
to a point where he or she no longer needs to think
about it, whereas a novice driver requires active
processing of each step, which can be tiring and
frustrating. Similarly, a skilled programmer can easily
create a "selection block", while a beginner must
actively think about the necessary structure, syntax,
variables and boolean symbols.

More complex schemata can only be built if the
brain is actively involved in the learning process, for
which free working memory capacities are needed
(Sweller & Van Merriënboer, 2005). In other words,
students must actively think about new programming
concepts. Unlike the nearly unbound long-term
memory, however, our working memory can only
deal with up to four elements or schemata at a time
(Sweller & Van Merriënboer, 2005). People who are
able to handle complicated programming tasks do not
think more sophisticatedly or process more elements,
but already have complex schemata that are treated as
a single element. In comparison, an inexperienced
programmer must process many different details
(elements) in his limited working memory. When
details or new information overwhelm the capacity of
working memory, problem-solving performance and
learning success decline (Sweller, 1988). During
programming education in particular, as in any other
problem-solving area, the cognitive load on novices
must, therefore, be carefully managed (Garner, 2002;
Paas et al., 2003). There are three different types of
cognitive load that essentially fight for the limited
resources of working memory. The intrinsic cognitive
load is caused by the learning content itself: the
programming language with its individual and
interacting elements (Sands, 2019). Extraneous
cognitive load is a burden on top of the content, that
may be caused by information search or
inappropriate teaching methods (Sweller & Van
Merriënboer, 2005). Intrinsic and extraneous
cognitive load can add up to such an extent that there
is no capacity left for germane cognitive load.
Germane cognitive load is necessary for learning
through thinking about new information and concepts
(Paas et al., 2003). The chosen programming
language and teaching methods must facilitate the
construction of schemata without overwhelming
limited cognitive capacities (Garner, 2002).

1 In the spirit of open education, the course material is freely available (see BP-1, 2023; BP-2, 2023).

2.1 Intrinsic Cognitive Load

It is especially the degree of interactivity between
novel elements that can produce high intrinsic
cognitive load (Garner, 2002). Simply learning
vocabulary, for example, produces a relatively low
burden because each word—an individual element—
can be learned separately (Garner, 2002). Learning
grammar, on the other hand, produces more intrinsic
cognitive load because the words in a sentence are
connected and their interactivity must be taken into
account (Garner, 2002). In this sense, learning a
programming language is an extremely high cognitive
burden, since abstract concepts and the syntax, so to
speak, and the grammar of a language has to be
learned (Sands, 2019; Stachel et al., 2013). It is often
assumed that the intrinsic cognitive load caused by
the learning content cannot be reduced (Sands, 2019;
Garner, 2002). This is not entirely true for
programming, as we can choose a language with
fewer abstract concepts and a simpler syntax, which is
an advantage that other fields do not have.

Many educators—here referring to C and
VisualBasic.NET—see “...the excessive amount of
class time spent on teaching the language syntax…”
(Al-Imamy et al., 2006, p. 280) as a major issue.
While a C-style syntax has influenced languages such
as Java, PHP, Go, or Swift, it is challenging for
beginners (Denny et al., 2011; Stefik & Siebert,
2013). Since learning syntax is a common challenge,
tools and languages have been developed to bypass
syntax altogether, but even so, general-purpose
programming languages are still predominantly used
in classrooms (Stefik & Siebert, 2013).

Some syntactic choices made by language
designers are perceived as easier to understand
because they are more similar to knowledge or
schemata from other domains (Stefik & Siebert,
2013). Unfortunately, most languages require
consideration of unnecessary elements and
interactions that students take time to learn. In Java,
for example, a keyword specifying the data type is
required before the name of a variable is stated in the
declaration (Sands, 2019). While an experienced Java
programmer doesn't have to think about it—having
automated schemata—this can be a burden for
beginners. In general, strictly typed variable
declarations pose a major challenge for beginners,
with dynamically typed languages being perceived as
more intuitive (Stefik & Siebert, 2013). From a
cognitive load perspective, omitting such declarations
reduces the number of elements and interactions a
novice must consider in working memory, thereby
freeing up capacity.

While experienced programmers are already
familiar with abstract characteristics of programming
languages, beginners tend to find aspects that are not
literal or are rooted neither in English or mathematics
difficult to understand (Stefik & Siebert, 2013). For
instance, novices are able to use statements like repeat

ten times more accurately than traditional C-style
looping syntax (Stefik & Siebert, 2013). The word
repeat, or loop is simply more common in English and
can be understood literally, as opposed to for.
Moreover, the use of a single equal sign is perceived
by beginners as easier to grasp than that of a double
equal sign (Stefik & Siebert, 2013). The meaning of a
single equal sign is a schema developed in
mathematics education, while a double equal sign is
rather uncommon. An intuitive language should be
designed so that prior, non-programming knowledge
can be applied as expected (McIver & Conway,
1996). When choosing a language to teach, we need
to put ourselves in the beginner's shoes and recognize
how many new aspects are necessary to understand,
and what existing schemata from other fields can be
useful. This is recognized by many teachers who
choose a language primarily for pedagogical reasons
rather than popularity or industry relevance (Mason et
al., 2012). In terms of students’ future and cognitive
load theory, it makes sense to focus on a general-
purpose language because it is much easier to transfer
schemata from one general-purpose language to
another. It is simply not possible to predict which
language will be popular or desired when students
start working in the industry. Therefore, we must
enable students to master one language without
frustrating them, as they can easily switch to another
language later if needed.

Learning success is of course also strongly
influenced by the teaching methods, which should
aim to keep the extraneous cognitive load as low as
possible in order to free up cognitive processing
resources for learning (Sweller & Van Merriënboer,
2005).

2.2 Extraneous Cognitive Load

Extraneous cognitive load is an additional burden that
is not required for learning (germane load) and is not
directly related to the content (intrinsic load) (Sands,
2019). Such a cognitive burden can, for instance, be
caused by redundant, unnecessary or too frequently
expressed information (redundancy effect) (Sweller &
Van Merriënboer, 2005). Additionally, extraneous
cognitive load may be imposed by lengthy web
searches for information needed to complete a task, or
by spreading relevant information across multiple
lessons, textbooks or reference manuals (locations or
times) (Sands, 2019). Various methods such as pair
programming or presenting worked or nutshell
examples are known to reduce cognitive burden.
During pair-programming learners can split minimally
demanding tasks—typing, navigation, or file
management—and highly demanding tasks—syntax
development or solution search—among themselves,
thereby reducing the cognitive burden (Sands, 2019).
Presenting practical—worked or nutshell—examples
where students are shown a solution step-by-step from
start to finish, helps to break down a complex and

novel problem into meaningful steps and provide
scaffolding for other problems (Sands, 2019; Stachel
et al., 2013).

While extraneous cognitive load can mostly be
reduced by suitable teaching methods and materials,
part of the load is also caused by the programming
language. For example, when a language forces to use
an unfamiliar operating system or a complex IDE,
basic tasks such as typing, file management, or
navigation become an unnecessary additional
cognitive burden.

2.3 Germane Cognitive Load

To learn, novices must actively invest free cognitive
resources; that is, an appropriate germane cognitive
load should be elicited (Sweller & Van Merriënboer,
2005). Freeing up working memory capacity by
reducing intrinsic and extraneous cognitive load is
only effective if students are motivated to actively
invest cognitive effort in schemata construction (Paas
et al., 2003). For this, it is important that students are
not frustrated with the teacher, grading, or
programming in general. In many classes, a common
problem is that students use a passive elaboration
strategy; they do not use free capacities to self-
elaborate new concepts (Sweller & Van Merriënboer,
2005). Common teaching methods to promote active
elaboration in class are to have students annotate
worked examples or complete missing code from a
well-structured program (Garner, 2002).

It is well-known that practicing programming
concepts in variable situations has a positive effect on
schemata building and educational transfer (Paas et
al., 2003). In order to have enough time to practice,
the chosen programming language should have
characteristics that are easy to understand and
therefore do not take up unnecessary time in class.

3 Language Characteristics

REXX coding can be achieved with a simple editor
(e.g., Notepad, gedit) or more complex IDEs (e.g.,
IntelliJ). While gedit is equipped with REXX syntax
highlighting by default, Intellij requires a readily
available plugin (Seik, 2023). This allows students to
select a tool with which they are most familiar,
thereby reducing extraneous cognitive load. While for
most languages a simple editor is sufficient, for
Python it is advisable to use an IDE, as it is necessary
to create intended blocks or include and manage
packages for basic functions.

REXX was developed with the goal of creating a
“human-oriented” language that is small, as well as
being easy to learn, code, remember, and maintain
(Fosdick, 2005). In the limited time available for
teaching, large languages such as C++ or Java can
only be taught by focusing on a subset of the entire
language, and intentionally ignoring important aspects

(McIver & Conway, 1996). This can be confusing
because textbooks or online tutorials rarely adhere to
the same subset, and beginners may encounter
features that were intentionally not taught. In
comparison, REXX is a small but powerful language
that can be taught in a short time. All necessary
knowledge is bundled in a single reference manual
(ooRexx, 2023). This eliminates the tedious search for
information and thereby reduces extraneous cognitive
load (Sands, 2019). In addition, the reference manual
itself provides brief and meaningful explanations,
syntax diagrams and nutshell examples. Figure 1
shows a syntax diagram for the Strip method; such
diagrams are used for all methods and functions in the
reference manual (ooRexx, 2023). With its
multimodal presentation (description and
visualization) of key knowledge and its nutshell
examples, the manual does a good job of reducing
unnecessary cognitive load (cf. Sands, 2019; Stachel
et al., 2013).

Figure 1. Syntax diagram (ooRexx, 2023, p. 206)

Many believe that making and correcting mistakes
is the best way to learn. However, the inadequacy of
error messages is a problem that dates back to
COBOL, but is still a problematic in C++ or Java
(Becker et al., 2016). Errors and related messages of a
compiler or interpreter should be understandable
without knowing technical jargon (McIver &
Conway, 1996). Unfortunately, error messages are
often “… terse, confusing, too numerous, misleading,
and sometimes seemingly wrong...”, this way “...they
become a source of frustration and discouragement”
(Becker et al., 2016, p. 21). We consider the error
messages of the ooRexx interpreter to be clear and,
above all, precisely pointing to the source of an error.
Most importantly, REXX's free-form syntax, its case-
insensitive nature, and its use of dynamic data types
avoid many common errors from the outset. Avoiding
such errors helps reduce frustration or disillusionment
with programming, which can motivate students to
invest the cognitive load required to construct
schemata and automate these through practicing
(Garner, 2002; Paas et al., 2003).

3.1 Free-form Syntax

REXX has a free-form syntax where the positioning
of the code is irrelevant. By default, the interpreter
merges multiple blanks into a single one before
execution. If this behavior is not desired, quotation
marks (“ or ’) can be placed directly next to each
other or two vertical bars can be used directly as
concentration operators (||). Strings in REXX can be
merged by listing them one after another in a single

expression and delimiting them with blanks. A string
encapsulated by quotation marks is not changed.
Figure 2 provides examples of this.

In teaching, the free form of REXX allows for the
creation of readable, consistent, and intentionally eye-
catching syntax that helps to convey new concepts to
novices who typically have difficulty grasping the
signals of novel concepts (McIver & Conway, 1996).

1 say "Hello World!" /* output: Hello World! */
2 say " This" 'is' "REXX!" /* output: This is REXX! */
3 say "Good""bye" || '!' /* output: Goodbye! */

Figure 2. Free-from syntax and string merge

Such flexibility is also important for learning
success, since fewer syntactic rules, details, or
elements are relevant, and this therefore imposes a
lower intrinsic cognitive load. In contrast to this
flexibility, spaces or indentations have a semantic
meaning in Python (e.g., for conditional statements).
Although it was probably a good intention to
eliminate grouping constructs, which reduces the
number of elements (e.g., parentheses, do, end, …)
and enforces structure, students do not seem to be
able to master the concept of consistent indentation
(McIver & Conway, 1996). This Python characteristic
is contrary to non-programming knowledge that
novices typically have, and can be considered to be a
case of excessive cleverness (McIver & Conway,
1996). A text written in a natural language is
understandable even with random indentations, and
this is how beginners implicitly expect a
programming language to behave. REXX's free-form
syntax ensures that this reasonable expectation is met.
Such violations of non-programming expectations, as
committed by Python, are probably the "worst
pedagogical sin" a programming language can
commit (McIver & Conway, 1996, p. 4).

3.2 Case-insensitivity

Unlike in most programming languages, the case of
symbols used in REXX is irrelevant. It does not
"bother" the interpreter whether a beginner writes do,
Do, dO or DO by mistake or on purpose. The REXX
interpreter will uppercase all characters outside of
quoted strings before executing them. This applies
equally to all aspects of the language, including
variable names, statements, functions, methods,
method options, and so on. Figure 3 provides an
example of this. While the strip method (see Figure 1)
removes leading and trailing characters by default this
behavior can be changed by an option, and a character
can also be specified to replace blanks. For example,
if you write “Leading”, “leading”, “LeaDing”, “l” or
“L”, which all give the same result, only the leading
blanks will be removed. This example shows that in
addition to being case-insensitive, an option can also
be spelled out, which makes its effect literally

understandable. Such literal comprehensibility,
further reduces the amount of learning (intrinsic
cognitive load) for novices. A Python beginner, on the
other hand, must first learn the meaning of strip(),
rstrip(), or lsrtip() and build up the schema that an "l"
here is an abbreviation for “leading”. While it is
obviously clever to use abbreviations, forcing such
behavior is another case of excessive cleverness.

1 a = " This" 'is' "REXX!" /* a merged string */
2 Say A /* output: This is REXX! */
3 SAY a~Strip("LEADing") /* output: This is REXX! */
4 say A~strip("l") /* output: This is REXX! */

Figure 3. Case-insensitivity

Considering variables, a Python novice must be
careful when naming or referring to these, because a
single case difference makes them distinct; Oranges
and oranges in this case are in fact two different
things (variables). Such a distinction between cases is
an additional element or rule that novices must learn,
which unnecessarily increases the intrinsic cognitive
load and may lead to frustrating syntax errors. Case
dependence also violates the expectation of natural
language schemata that an Orange remains an orange
regardless of its case.

If someone new to a natural language makes a
grammatical error—analogous to a syntax error—he
or she can still accomplish the intended task of
communication if the other person has a basic level of
generosity and flexibility. However, a typical
compiler or interpreter is by no means generous or
flexible, but will mercilessly reject any slight
deviation. This can be frustrating for students because
they cannot achieve their goal of creating an
executable program. The free-form and case-
insensitive nature of REXX makes the interpreter
more generous and flexible, and allows students to
write a form of pseudo-code without frustration.

3.3 Data Type and Arithmetic

The REXX language has a single data type, a string
value, which is immutable. Arithmetic is possible if
the string contains numbers. The REXX interpreter
defines the datatype implicitly with assignment or in
the context of instructions. Compared to strictly typed
languages, this eases the intrinsic cognitive load on
students (Stefik & Siebert, 2013). When assigning
variables, REXX students must consider fewer
elements (e.g., no declaration of integer, float, ...) and
their interaction with the rest of the program. It is not
necessary to think about the required calculation
precision in advance, as is the case in mathematics
classes.

REXX's arithmetic, defined in ANSI/INCITS
X3.274, formed the basis for the definition of
ISO/IEC/IEEE standards that have been used to
implement decimal arithmetic in languages such as

Java, Python, and others (ANSI, 1996; Cowlishaw,
2022). By default, nine significant digits are used for
the calculation, but this precision can be adjusted if
desired. In REXX, variable names can start with a
letter, an underscore, an exclamation mark or a
question mark, followed by the same set of symbols
and additional numbers and dots. All variables that
contain a dot become compound variables, which can
be used to represent associative arrays. In this way,
associative arrays can be declared without much effort
and can be used like a typical variable. An example of
this can be seen in Figure 4.

1 var = 6 * 7 /* assign and evaluate 6 * 7 */
2 say var /* output: 42 */
3 stem.1 = 4 /* assign 4 to compount variable */
4 say var - stem.1 / 0.7 /* output: 36.2857143 */
5 numeric digits 20 /* now use 22 digit precision */
6 say var - stem.1 / 0.7 /* output: 36.285714285714285714 */

Figure 4. Basic arithmetic and stem variables

3.4 Instructions

The ANSI/INCITS REXX standard defines
assignment, keyword and command as three distinct
instruction types (ANSI, 1996). An assignment
instruction in REXX consists of a variable name, a
single equal sign (=) as assignment operator, and an
expression that contains the string that is assigned.
The assignment “var = 6 * 7” would evaluate the
expression (a multiplication) and assign the result 42
to the variable var (line 1 in Figure 4).

A keyword statement begins with a keyword; for
example, address, say, if, call, do, loop, parse and
others. Note that these keywords reflect their meaning
in literal English. In this way, students can further
draw on the schemata they have acquired in English
classes. For illustration, Figure 5 shows a REXX
program and Figure 6 shows a Python program with
the same functionality.

1 /* an assignment instruction: */
2 a = "Hello World!" /* assigns "Hello World!" to a */
3 /* an assignment instruction: */
4 say a /* output: Hello World! */
5 /* an command instruction: */
6 "dir a.txt" /* command: list the file a.txt */
7 /* variable RC contains the command's return code */
8 if rc = 0 then say "found!" /* 0 means success */
9 else say "some problem occurred, rc="rc /* shows rc */

Figure 5. Instructions in REXX

A quoted string, including a variable or an
expression evaluated as a string, is recognized by the
REXX interpreter as a command instruction (line 6 in
Figure 5). By default, the command is executed as if it
were typed in a command line. The return code is
made available immediately via the rc variable (line 8
in Figure 5). This feature made REXX popular on
mainframes as it facilitates addressing the operating

system, editors and utilities. If experience with the
command line is available, solutions can be found
with the existing system functions even without great
programming knowledge.

Figure 5 contains the if keyword instruction with a
dependent then and an else keyword instruction (line
8f in Figure 5). Depending on the programmer's
preference, these instructions can be on separate lines.
The indentation here is a preference decision and does
not change the semantics of an instruction. In
comparison, indentions in Python (see Figure 6) have
semantic meaning and are mandatory, which limits
flexibility and dictates programmer preferences. To
understand or even write the Python program in
Figure 6, many more details must be considered. For
example, a module called subprocess must be
imported (line 6 in Figure 6), its run() method called
to submit the command to the system (line 8 in Figure
6), and the strictly int-typed return code fetched (line
9 in Figure 6). It should also be noted that two equal
signs (==) represent an equality and one sign (=)
represents an assignment operator (line 10 in Figure
6). Also, the built-in function str() must be known if
concentration is desired (line 11 in Figure 6). Only if
the students then also manage to put the colons (:) and
the indentation correctly do they achieve a working
program.

1 # an assignment instruction
2 a="Hello Word!" # assigns "Hello World!" to a
3 # no keyword instruction, using built-in function()
4 print(a)
5 # no command instruction, using module subprocess instead
6 import subprocess
7 # execute command
8 completedProcess=subprocess.run("dir a.txt", shell=True)
9 rc=completedProcess.returncode # fetch return code, an int
10 if rc==0:
11 print("found!") # indentation mandatory
12 else:
13 print("some problem occurred, rc="+str(rc)) # to string

Figure 6. Instructions in Python

The amount of time required to explain all the
necessary Python concepts in class before students
can productively write such a program is enormous.
This is not only problematic given the limited time in
class, but also puts a strain on student cognitive
capacity and motivation. From the perspective of
cognitive load theory, a much greater intrinsic
cognitive load is generated, straining the limited
resources of working memory for the necessary
germane cognitive load.

3.5 Built-in and External Functions

REXX defines about 80 built-in functions, the number
of which has been kept stable over the last 40 years.
Even though the number of built-in functions may
seem limited, they are powerful and more than

enough to be productive. For example, functions that
require additional packages in Python, such as root
calculations (e.g., sqrt()), are already integrated.
REXX can be extended with external functional
libraries using the ::requires directive. Such libraries
are easy to write and are usually organized around
domain-specific functions and are only included on a
per-program basis.

As with the strip method (see Figures 1 and Figure
3), most built-in functions have a default behavior that
can be changed by options. The date() function, for
instance, returns the date as a “6 Mar 2023” string,
while date(‘s’) returns the string suitable for sorting
as “20230306”. In teaching, we consider it helpful
that built-in functions and methods work without
specifying options, so that you can use them from the
beginning without worrying about details.

Mastering Java syntax is often seen as a major
obstacle even for good students (Denny et al., 2011).
The BSF4ooREXX Java bridge (BSF4ooRexx, 2023)
enables students to use these functions without having
to deal with the demanding Java syntax. Figure 7
shows a simple example, where BSF4ooREXX is
included as if it were an external function (line 6 in
Figure 7) and the javax.swing.JFrame class is invoked
and the message show sent to it (line 1 in Figure 7).

1 frame=.bsf~new("javax.swing.JFrame", "Hello, my beloved
 world - from ooRexx!")
2 frame~setSize(410,20) /* set width and height */
3 frame~visible=.true /* make JFrame visible */
4 call SysSleep 10 /* sleep for ten seconds */
5
6 ::requires "BSF.CLS" /* get access to Java bridge */

Figure 7. Invoke javax.swing.JFrame class

The result is a user interface frame titled “Hello,
my beloved world - from ooRexx!”. The output can
be seen in Figure 8, which shows how easy it can be
to create GUI programs for any modern operating
system. The ease with which external functions can be
written and included, and the simplicity of how the
operating system can be addressed and COM/OLE
objects or Java classes can be used, makes REXX
more than "just" a language for beginners.

Linux

MacOS

Windows

Figure 8. Result of code in Figure 7

3.6 Object-oriented

As an object-oriented language, useful base classes,
data encapsulation, polymorphism, class hierarchy,
method inheritance and concurrency are provided in
ooRexx (ooRexx, 2023). ooRexx, the object-oriented

paradigm of REXX, uses the tilde (~) as an explicit
message operator. The programmer communicates
with objects by sending them messages that name a
method with potential options (or arguments). The
receiving object looks for this method, invokes it on
behalf of the programmer, and returns all the results
that this method and its options may lead to. This
explanation suffices to have students understand the
concepts of insulation and inheritance. Without
introduction, the object-oriented paradigm was
already used in Figure 3, where the String object
received the message ~strip("leading"), which
returned the string without leading spaces. Even with
object-oriented programming, the ooRexx concepts
manage to help beginners get started without
unnecessary teaching time and cognitive load.

4 Conclusion

We consider cognitive load theory as a useful
perspective to improve programming education and to
choose an appropriate language. We see REXX's
language characteristics to be the most important
success factor in enabling students to learn productive
programming quickly—within a few months—by
minimizing unnecessary cognitive burden. These
characteristics prevent troublesome errors and reduce
the frustration associated with teaching and learning
programming. Our experience has shown that students
who have learned REXX subsequently learn other
languages considered relevant by the industry, such as
Visual Basic, Python, and especially Java, much more
quickly and efficiently (Flatscher, 2023). We hope
that this article will encourage future research on
cognitive load in programming education and a
consideration of REXX as an introductory language.

References

AmigaOS Manual: Arexx. (2023, May 27). In
AmigaOS Wikipedia.
https://wiki.amigaos.net/wiki/AmigaOS_Manual:_
Arexx.

ANSI. (1996). ANSI X3.274-1996—Programming
Language REXX. Retrieved from
https://www.rexxla.org/rexxlang/standards/.

Becker, B. A., Glanville, G., Iwashima, R.,
McDonnell, C., Goslin, K., & Mooney, C. (2016).
Effective compiler error message enhancement for
novice programming students. Computer Science
Education, 26(2-3), 148-175.

BP-1. (2023, February, 16). Business Programming 1.
Retrieved from
https://wi.wu.ac.at/rgf/wu/lehre/autowin/material/f
oils/.

BP-2. (2023, February, 16). Business Programming 2.
Retrieved from
https://wi.wu.ac.at/rgf/wu/lehre/autojava/material/
foils/.

BSF4ooRexx. (2023, May, 26). Makes all of Java
directly available to ooRexx and vice versa.
Retrieved from
https://sourceforge.net/projects/bsf4oorexx/.

Cowlishaw, M. (2022). General Decimal Arithmetic.
Retrieved from https://speleotrove.com/decimal/.

Cowlishaw, M. (1987). The design of the REXX
language. ACM SIGPLAN Notices, 22(2), 26-35.

Data is Beautiful. (2019, October 7). Most Popular
Programming Languages 1965 – 2019 [Video
file]. Youtube. https://www.youtube.com/watch?
v=Og847HVwRSI.

Denny, P., Luxton-Reilly, A., Tempero, E., &
Hendrickx, J. (2011, June). Understanding the
syntax barrier for novices. In Proceedings of the
16th annual joint conference on Innovation and
technology in computer science education (pp.
208-212).

Flatscher, R.G., (2023). Proposing ooRexx and
BSF4ooRexx for Teaching Programming and
Fundamental Programming Concepts. In
Proceedings of ISECON 2023. Forthcoming.
Plano.

Flatscher, R. G., & Müller, G. (2021). " Business
Programming"–Critical Factors from Zero to
Portable GUI Programming in Four Hours.

Fosdick, H. (2005). Rexx programmer's reference.
John Wiley & Sons.

Garner, S. (2002). Reducing the cognitive load on
novice programmers (pp. 578-583). Association
for the Advancement of Computing in Education
(AACE).

List of programming languages. (2023, May 27). In
Wikipedia.
https://en.wikipedia.org/wiki/List_of_programmin
g_languages.

Mason, R., Cooper, G., & de Raadt, M. (2012,
January). Trends in Introductory Programming
Courses in Australian Universities–Languages,
Environments and Pedagogy. In Proceedings of
the Fourteenth Australasian Computing
Education Conference (Vol. 123, pp. 33-42).

McIver, L., & Conway, D. (1996, January). Seven
deadly sins of introductory programming language
design. In Proceedings 1996 International
Conference Software Engineering: Education and
Practice (pp. 309-316). IEEE.

ooRexx. (2023, April 19). ooRexx (Open Object
Rexx) Files. Retrieved from
https://sourceforge.net/projects/oorexx/files/oorex
x/.

Paas, F., Tuovinen, J. E., Tabbers, H., & Van Gerven,
P. W. (2003). Cognitive load measurement as a
means to advance cognitive load theory.
Educational psychologist, 38(1), 63-71.

PYPL. (2023). PYPL PopularitY of Programming
Language. Retrieved from
https://pypl.github.io/PYPL.html.

Robins, A., Rountree, J., & Rountree, N. (2003).
Learning and teaching programming: A review
and discussion. Computer science education,
13(2), 137-172.

Sands, P. (2019). Addressing cognitive load in the
computer science classroom. Acm Inroads, 10(1),
44-51.

Seik, A., (2023, February, 12). ooRexx Plugin for
IntelliJ IDEA and ooRexxDoc. Retrieved from
https://sourceforge.net/projects/bsf4oorexx/files/S
andbox/aseik/ooRexxIDEA/GA/2.1.0/.

Stachel, J., Marghitu, D., Brahim, T. B., Sims, R.,
Reynolds, L., & Czelusniak, V. (2013). Managing
cognitive load in introductory programming
courses: A cognitive aware scaffolding tool.
Journal of Integrated Design and Process Science,
17(1), 37-54.

Stefik, A., & Siebert, S. (2013). An empirical
investigation into programming language syntax.
ACM Transactions on Computing Education
(TOCE), 13(4), 1-40.

Sweller, J. (1988). Cognitive load during problem
solving: Effects on learning. Cognitive science,
12(2), 257-285.

Sweller, J., & Van Merriënboer, J. J. G. (2005).
Cognitive load theory and complex learning:
Recent developments and future directions.
Educational Psychology Review, 53(3), 147-177.

WU (2023, February, 16). Selected Seminar,
Diploma, Bachelor and Master Theses. Retrieved
from https://wi.wu.ac.at/rgf/diplomarbeiten/.

